Mean survival time by ordered fractions of population with censored data

Celia García-Pareja*, Matteo Bottai *

* Unit of Biostatistics, IMM, Karolinska Institutet, Stockholm, Sweden, {celia.garcia.pareja, matteo.bottai}@ki.se

Mean survival by ordered fractions

- Let *T* be a non-negative random variable with $E[T] < \infty$.
- Expectation of *T* can be expressed as

$$\mu = \mathbf{E}[T] = \int_0^\infty S(t) dt = \int_0^1 Q(p) dp,$$
 (1)

where $S(\cdot)$ and $Q(\cdot)$ denote the survival and quantile functions, respectively.

• Given $\{\lambda_0, \lambda_1, \dots, \lambda_K\}$ grid of proportions, we divide μ into separate components

$$\mu = \sum_{k=1}^{K} \mu_k, \text{ where } \mu_k = \int_{\lambda_{k-1}}^{\lambda_k} Q(p) dp, \quad \lambda_0 = 0 \text{ and } \lambda_K = 1, \quad (2)$$

with $\lambda_{k-1} < \lambda_k, \forall k \in \{1, \dots, K\}$.

Mean survival by ordered fractions vs. Restricted mean

When $\lambda_K < 1$, the mean survival time for the λ_K -th fraction of the population observed to experience the event, does not correspond to the restricted mean [2] computed up to the last observed quantile $y^* = Q(\lambda_K)$, i.e.,

$$\overline{\mu}_{K} = \frac{1}{\lambda_{K}} \int_{0}^{\lambda_{K}} Q(p) \mathrm{d}p \neq \int_{0}^{y^{\star}} S(y) \mathrm{d}y = \mu^{\star}.$$

Application example: Survival after bone marrow transplant in lymphoma patients

• Data on 35 patients with lymphoma that received either an allogenic or an

• Weighting each μ_k by its corresponding inverse proportion

 $\overline{\mu}_k = \frac{\mu_k}{\lambda_k - \lambda_{k-1}},$

we obtain the mean survival time for the fraction of population defined by $(\lambda_{k-1}, \lambda_k)$.

Easy interpretation

If $(\lambda_0, \lambda_1) = (0, 0.5)$, $\overline{\mu}_1$ quantifies mean survival time for the first half of the population to experience the event of interest.

• In the presence of a censoring variable *C*, when $Y = \min(T, C)$ is observed, λ_K in (2) can be set to the largest proportion of observed events (corresponding to the last observed quantile).

Estimation and simulation results

- We estimate μ_k via the Kaplan-Meier estimator of the underlying survival function.
- Given $\widehat{S}(\cdot)$ and the grid of proportions $\{\gamma_0, \gamma_1, \dots, \gamma_K\} = \{1 \lambda_0, 1 \lambda_1, \dots, 1 \lambda_K\}$, from (1) and (2)

 $\widehat{\mu_{k}} = \sum_{\substack{j=1\\I_{k}}}^{J_{k}} y_{j}[\min\{\widehat{S}(y_{j-1}), \gamma_{k-1}\} - \max\{\widehat{S}(y_{j}), \gamma_{k}\}]$

- autologous bone marrow transplant [3].
- Aim of the study: finding differences in lymphoma-free survival after having received either type of transplant.

Figure 1: Estimated Kaplan-Meier survival curves after bone marrow transplant for lymphoma patients that received allogenic (solid line) or autologus (dashed line) transplant.

Results' comparison

Restricted mean survival estimates do not detect significant differences between

$$= \sum_{j_k=1}^{J_k} \widehat{Q}(p_j)(p_j - p_{j-1}),$$

where y_j are observed event times such that $\widehat{S}(y_j) \in [\gamma_k, \gamma_{k-1}], \forall j \in \{1, ..., J_k\}$, and $\widehat{S}(y_0) \ge \gamma_{k-1}$ and $\widehat{S}(y_{J_k}) \le \gamma_k$.

Table 1: Average over 5,000 samples with 200 observations from a log-logistic model with scale $\alpha = 1$ and shape $\beta = 2$, and censoring variable uniform in (0,7/3) (average censoring rate of 50%).

k	λ_k	μ_k	$\widehat{\mu_k}$	$\widehat{\mu_k^L} - \widehat{\mu_k^U}$	nsim _k	\mathbf{d}_k
1	0.20	0.064	0.064	0.044 - 0.086	100%	34
2	0.40	0.131	0.132	0.101 - 0.175	100%	29
3	0.60	0.201	0.202	$0.156 - 0.264^{\star}$	100%	23
4	0.80	0.311	0.304	$0.226 - \infty$	70.7%	14
5	0.95	0.420	0.307	$0.239 - \infty$	5.80%	4

Where

- μ_k true mean survival time for fraction (λ_{k-1}, λ_k).
- $\widehat{\mu_k}$ estimated mean survival time for fraction (λ_{k-1}, λ_k).
- $\hat{\mu}_k^L$ and $\hat{\mu}_k^{U}$ lower and upper bounds integrating over equal precision confidence bands for the Kaplan-Meier estimator [1].
- nsim_k % of simulations where $\widehat{\mu_k}$ could be computed.
- d_k number of observed events.

groups

146.5 days, 95% CI (-29.71, 322.7).

• Mean survival by ordered fractions estimates detect significant differences among earlier failures

32.15 days, 95% CI (13.98, 50.31),

among the weakest 10% of the patients (first 10% to die or relapse in each group after receiving the transplant).

Table 2: Estimates for mean survival differences (in days) between allogenic $(\overline{\mu_k})$ and autologus $(\overline{\mu_k})$ bone marrow transplants with bootstrapped 95% confidence intervals by ordered deciles of population up to the last commonly observed fraction (80th percentile).

$k \ \widehat{\overline{\mu^1}_k}$ -	$-\widehat{\overline{\mu^0}_k}$	95% CI
1 32.	15 13	3.98-50.31
2 36.	72 2.	.843-70.60
3 26.	23 —1	19.94 - 72.43
4 28.	98 —4	40.51 - 98.48
5 32.	80 —1	124.5 - 190.1
6 80.	60 —	1283 - 1444
7 349	9.4 —	446.4 - 1145
	$ \begin{array}{c} k & \widehat{\mu^{1}}_{k} - \\ \hline 1 & 32. \\ 2 & 36. \\ 3 & 26. \\ 4 & 28. \\ 5 & 32. \\ 6 & 80. \\ 7 & 349 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Precision

Estimates' precision decreases with increasing *k*, as the proportion of censored observations increases with *k* and, on average, fewer events are observed.

- We detected an improvement on lymphoma-free survival for the autologus transplant group amongst the weakest 20% of patients, that is, amongst those who first died or relapsed.
- No difference between the groups was detected when using restricted mean estimates.

References

- [1] Nair, V.N. Confidence Bands for Survival Functions with Censored Data: A Comparative Study *Technometrics*, 26(3):265-275, 1984.
- [2] Irwin, J. O. The Standard Error of an Estimate of Expectation of Life, with Special Reference to Expectation of Tumourless Life in Experiments with Mice. *Journal of Hygiene* 47(2):188-189, 1949.
- [3] Avalos, B.R., Klein, J.L., Kapoor, N., Tutschka, P.J., et al. Preparation for Marrow Transplantation in Hodgkin's Lymphoma Using Bu/CY. Bone Marrow Transplantation 12(2):133-138, 1993.

