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A ROBUST AND COMPUTATIONALLY EFFICIENT ESTIMATOR

FOR CENSORED QUANTILES
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Karolinska Institutet, Institute of Environmental Medicine, Unit of Biostatistics

Abstract:

Quantile regression is an increasingly popular approach to statistical modeling.

Numerous methods have been proposed to extend quantile regression to censored

data. Maximizing the log-likelihood of a Laplace distribution yields an efficient yet

biased estimator and presents computational advantages over the other methods.

We discuss the bias of Laplace regression estimators and present results from a

comprehensive simulation study, showing that the bias is generally negligible and

the mean squared error is smaller than that of the other methods. Possible expla-

nations of this empirical evidence are discussed. Analysis of big data represents an

important application of the Laplace regression estimator.

Key words and phrases: Censored quantile regression; asymmetric Laplace distri-

bution; big data.
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1 Introduction

Quantile regression (Koenker, 2005) permits estimating conditional quantiles of

an outcome. Typically, a linear predictor xTβp is used to describe the effect of a

q-dimensional vector x of covariates on the p-th quantile of the response variable

of interest. The vector βp of regression coefficients is quantile-specific and no

global assumptions are maintained, making of quantile regression a distribution-

free approach.

Applying quantile regression to censored data is of great interest in various

applied fields. For example, quantiles of survival time are often preferred to

hazard ratios, due to their simpler interpretation. Throughout the paper, we

denote by T a response variable of interest, and by C a censoring variable such

that one can only observe Y = min(T,C) and δ = I(T ≤ C). We denote by

fT (t | x), FT (t | x), and QT (p | x) the conditional probability density function

(pdf), cumulative distribution function (cdf), and quantile function (qf) of T .

The distribution of C given x is defined analogously. We assume that (i) T and

C are independent, given x; and (ii) for a given p ∈ (0, 1),

QT (p | x) = xTβp (1)

is the conditional p-th quantile of T .

Various methods have been proposed to estimate βp based on a censored

random sample (yi, δi,xi), i = 1, . . . , n. Portnoy (2003) discussed a recur-

sive reweighting algorithm that generalizes the Kaplan-Meier estimator using

the redistribution-of-mass concept introduced by Efron (1967); Peng and Huang

(2008) introduced a martingale-based approach that generalizes the Nelson-Aalen

estimator. Both methods estimate the true outcome distribution FT under a

global linearity assumption that requires all lower-order quantiles to be linear.

To overcome global linearity, that is often considered too restrictive, Wang and
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Wang (2009) proposed a two-step estimator. The first step requires estimating

FT nonparametrically, while the second step is a weighted quantile regression

based on a weighting function w(FT ). Other two-step estimators are discussed

by Leng and Tong (2013) and Frumento and Bottai (2016).

In their paper, Bottai and Zhang (2010) explored the use of the log-likelihood

of the asymmetric Laplace distribution. This method is computationally simpler

than the other aforementioned approaches, and does not require estimating FT .

Moreover, it can be easily generalized to handle truncation, include frailty terms,

and fit nonlinear quantiles. Although Laplace regression is generally biased,

empirical evidence demonstrates that the bias is usually very small. This result

is counterintuitive, and the need for further investigation motivated this paper.

The most relevant application of Laplace regression is the analysis of big data,

where other methods may prove extremely time-consuming.

The paper is structured as follows. In Section 2, we briefly recap the Laplace

regression framework, and describe its properties in Sections 3. In Section 4 we

present a wide simulation study that measures its bias and compares it with that

of Portnoy’s (2003) estimator, which represents the most widely used method

for censored quantile regression. Other estimators were shown to be similar to

Portnoy’s (Koenker, 2008; Frumento and Bottai, 2016), and are not considered

in this paper. In section 5 we discuss computation times and argue that, as of

today, Laplace regression may represent the only feasible method to analyze big

data.
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2 Laplace regression

2.1 The asymmetric Laplace distribution

We consider the following conditional pdf and cdf:

fp(t | x,βp, σp(x)) =
p(1− p)
σp(x)

exp

{
(ωp − p)(t− xTβp)

σp(x)

}
(2)

Fp(t | x,βp, σp(x)) = 1− ωp + (p− 1 + ωp) exp

{
(ωp − p)(t− xTβp)

σp(x)

}
where ωp = I(t ≤ xTβp). This distribution is an asymmetric Laplace (al)

distribution in which parameters are functions of covariates. Consistently with

model (1), the location parameter is xTβp and represents the conditional p-

th quantile, as Fp(x
Tβp | x,βp, σp(x)) = p. The scale parameter σp(x) >

0 may depend on x through an unknown vector ηp such that σp(x) = σ(x |

ηp). Throughout the paper, we will use the notation al(p) for this conditional

distribution. Note that p is an asymmetry parameter and represents the order of

the quantile. Examples of the pdf of the standard al distribution are illustrated

in Figure 1.

2.2 Equivalence between Laplace regression and ordinary quan-

tile regression

We denote by (xi, ti) a random sample from the joint distribution of (x, T ),

i = 1, . . . , n. The log-likelihood of the al(p) model is the following:

ln(βp, σp) = n−1
n∑
i=1

− log σp(xi) + (ωi,p − p)(ti − xT
i βp)/σp(xi). (3)

If σp is scalar, maximizing (3) with respect to βp is equivalent to minimizing the

loss function of ordinary quantile regression, given by

n−1
n∑
i=1

(p− ωi,p)(ti − xT
i βp),
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and yields the same consistent estimator of βp irrespectively of the true outcome

distribution. If σp is allowed to depend on covariates, observations are given

a non-constant weight σp(xi)
−1, which is proportional to the al(p) density at

ti = xT
i βp. This also yields a consistent estimator of βp, and frequently leads to

a gain in efficiency. On the other hand, it requires carrying out joint estimation

of βp and σp(x), which is unnecessary when σp is scalar.

2.3 Censored Laplace regression

In their paper, Bottai and Zhang (2010) introduced the idea of estimating cen-

sored quantile regression coefficients by fitting the al distribution to the data,

extending the equivalence between Laplace regression and quantile estimation.

The log-likelihood of the al(p) model for censored data is

ln(βp, σp(x)) = (4)

n−1
n∑
i=1

δi log fp(yi | xi,βp, σp(xi)) + (1− δi) log F̄p(yi | xi,βp, σp(xi))

where yi = min(ti, ci), δi = I(ti ≤ ci), and F̄p(·) = 1 − Fp(·). Maximizing (4),

however, yields a biased estimator of βp except in trivial cases (see Section 3).

Since the model is misspecified (as FT 6= Fp), a misspecified cdf is used for the

contribution of censored observations in the likelihood function.

Unexpectedly, the bias has been shown to be very small in various simulation

scenarios. A heuristic interpretation has been provided, based on a maximum

entropy principle in which a fundamental role is played by the scale parameter

σp, that represents the scale parameter of an Exponential distribution governing

the weighted residuals (p−ωi,p)(ti−xT
i βp). We refer to Bottai and Zhang (2010)

for details.
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3 The score function and its expectation

The first derivatives of log-likelihood (4) with respect to its arguments are

Sβp(βp, σp(x)) = n−1
n∑
i=1

xi
σp(xi)

× (5)

×
{
p− ωi,p +

ωi,p(1− δi)(1− p)
1− Fp(yi | xi,βp, σp(xi))

}
and

Sσp(βp, σp(x)) = n−1
n∑
i=1

1

σp(xi)
× (6)

×
[yi − xT

i βp
σp(xi)

{
p− ωi,p +

ωi,p(1− δi)(1− p)
1− Fp(yi | xi,βp, σp(xi))

}
− δi

]
,

respectively. The expected values of Sβp and Sσp are

S̄βp(βp, σp(x)) = Ex

[ x

σp(x)

{
p− 1 + F̄T (xTβp | x)F̄C(xTβp | x)+ (7)

+(1− p)
∫ xTβp

−∞

F̄T (t | x)

F̄p(t | x,βp, σp(x))
dFC(t | x)

}]
and

S̄σp(βp, σp(x)) = Ex

[ 1

σp(x)2

{
pE[Y | x]−

∫ xTβp

−∞
tfY (t | x)dt+ (8)

+(1− p)
∫ xTβp

−∞

tF̄T (t | x)

F̄p(t | x,βp, σp(x))
dFC(t | x)− σp(x)E[δ | x]

}]
,

respectively. In the above formulas, Ex denotes expectation over the distribution

of x. In equation (8) we omitted a quantity that is zero when S̄βp = 0, while

fY (y | x) = fT (y | x)F̄C(y | x)+fC(y | x)F̄T (y | x) is the conditional distribution

of Y = min(T,C), and E[δ | x] =
∫∞
−∞ fT (t | x)F̄C(t | x)dt is the expected

conditional probability that T ≤ C. Equations (7) and (8) can be used to

investigate the asymptotic behavior of the Laplace regression estimator.

We denote by β0
p the true population parameter satisfying QT (p | x) = xTβ0

p.

As shown by Bottai and Zhang (2010), S̄βp(β0
p, σp(x)) is trivially zero in two
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cases, namely (a) FC(xTβ0
p | x) = 0, i.e., no censoring before the quantile; and

(b) FT (t | x) = Fp(t | x,β0
p, σ

0
p(x)) for some σ0p, i.e., the al(p) distribution is the

true model. In all other situations, censored Laplace regression yields a biased

estimator of βp.

We define β̂p and σ̂p to be the solutions toS̄βp(βp, σp(x))

S̄σp(βp, σp(x))

 =

0

0

 (9)

i.e., the asymptotic values of the maximum likelihood estimators. Further, we

define σ∗p such that

S̄βp(β0
p, σ
∗
p(x)) = 0, (10)

i.e., the ideal value of σp that would make the Laplace regression estimator of

βp unbiased. We demonstrate that, for any given x, σ∗p(x) exists and is unique.

Elementary algebra gives that

S̄βp(β0
p, σp(x)) = (11)

(1− p)Ex
[ x

σp(x)

{∫ xTβ0
p

−∞

F̄T (t | x)

F̄p(t | x,β0
p, σp(x))

dFC(t | x)− FC(xTβ0
p | x)

}]
,

which is a continuous function of σp(x), and that

lim
σp(x)→0+

S̄βp(β0
p, σp(x)) = −∞, lim

σp(x)→+∞
S̄βp(β0

p, σp(x)) = 0+.

Moreover, it can be easily shown that S̄βp(β0
p, σp(x)) has a single change of sign,

which permits concluding that there is a unique σ∗p(x) satisfying (10). The typical

behavior of S̄βp(β0
p, σp(x)) is exemplified in Figure 2.

The presence of bias is due to the fact that, because of model misspecification,

σ̂p 6= σ∗p and thus β̂p 6= β0
p. In principle, unbiasedness could be achieved by

maximizing (4), the censored al(p) log-likelihood, with respect to βp only, letting

σp(x) = σ∗p(x). Evaluating σ∗p(x), however, is not feasible, because equation (11)

involves the unknown quantities FT (t | x), FC(c | x), and β0
p itself.
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Although σ̂p does not estimate any population parameter, it measures the

dispersion of the data around the quantile and is subject to a maximum entropy

interpretation. More importantly, and quite unexpectedly, maximum likelihood

estimators of βp proved very accurate. An illustrative example is reported in

Figure 3, where unconditional quantiles of highly skewed and multimodal distri-

butions are shown to be almost perfectly estimated with severe censoring, despite

the fact that the true distribution is drastically different form the al.

Empirical evidence suggests that σ̂p and σ∗p are likely to be quite different,

and typically σ̂p < σ∗p. The absolute bias, however, increases very slowly as σ̂p

departs from σ∗p, which clarifies how, but does not explain why, censored Laplace

estimators are robust to model misspecification. Extensive simulation results are

presented in the next section.
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Figure 1: Shape of different asymmetric Laplace distributions with location equal to 0

and scale equal to 1.
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log σp

S
β p

(β
p0 , σ

p) 0

Figure 2: Shape of S̄βp
(β0

p, σp). The function goes to −∞ as σp tends to 0, and to 0+

as σp tends to +∞. At σ∗
p, the function crosses the zero, i.e., solving S̄βp

(βp, σ
∗
p) = 0

yields an unbiased estimator of βp.
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Figure 3: pdf of multimodal, highly skewed distributions (left) and the corresponding

qf (right). The dots represent the deciles β̂0.1, . . . , β̂0.9, obtained solving (9) when T

and C have the same distribution, such that the expected proportion of censoring is 0.5.
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4 Simulation results

We conducted an extensive simulation study to evaluate the performance of cen-

sored Laplace regression and compared it with Portnoy’s (2003) estimator, which

represents the most commonly used method and is implemented in the quantreg

R package. To implement al regression, we modeled the scale parameter as

log (σp(x | ηp)) = xTηp and used a gradient-based algorithm (Bottai, Orsini and

Geraci, 2014) to optimize the log-likelihood (4) with respect to (βp,ηp).

The following procedure was used to randomly generate a variety of scenarios,

corresponding to different joint distributions of (x, T, C).

• Covariates. Six covariates were used: (x1, x2, x3) binary, and (x4, x5, x6)

taking on integer values between 1 and 10. For each scenario, a different

joint distribution of x = [1, x1, . . . , x6]
T was defined by randomly assigning a

probability weight, say w, to each of the 23×103 = 8000 covariate patterns.

Weights were generated as w = w1×w2, where w1 was binary with P (w1 =

1) = 0.01, and w2 ∼ Exp(1).

• Response variable. The conditional qf of T was defined as QT (p | x) =

xTβ(p), where β(p) = [β0(p), β1(p), . . . , β6(p)]
T were obtained as the inter-

polating splines (Hyman, 1983) between p = (0, 1/k, 2/k, . . . , 1) and a set

of monotonically increasing values b = (b0, b1, b2, . . . , bk). The value of k

was randomly selected between 3 and 6, while b was generated as follows:

first, b0 and bk were drawn from a U(−5, 5) distribution; then, b1, . . . , bk−1

were drawn from a U(b0, bk) distribution.

• Censoring variable. The censoring variable was defined to have a U (0, θ(x))

distribution, with θ(x) such that the probability of censoring was a prespec-

ified value α(x). For each scenario and each covariate pattern, α(x) was
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drawn from a U(0.20, 0.30) distribution, leading to an average censoring of

0.25.

In total, B = 10, 000 scenarios were generated. For each scenario, R = 250

simulated datasets were used to evaluate the following quantities:

bias(β̂p) = Ex

[
| p− FT (xTE[β̂p]) |

]
, (12)

mse(β̂p) = Ex

[
{p− FT (xTβ̂p)}2

]
. (13)

The first quantity measures the absolute bias of an estimator β̂p of βp. If the esti-

mator is unbiased, then E[β̂p] = βp and bias(β̂p) = 0. Intuitively, if bias(β̂p) = ε,

the quantile being estimated is between p − ε and p + ε. The second quantity

measures the mean squared error (mse) as the dispersion of FT (xTβ̂p) around

p = FT (xTβp). The above measures of bias and mse are averaged with respect

to the distribution of x and are unaffected by the scale of T,C, and x.

Results are displayed in Tables 1 and 2 and Figures 4 and 5. The bias of

al regression was only slightly larger than that of Portnoy’s estimator, and was

generally negligible. For example, with n = 1000, the bias at the 6th decile was

smaller than 0.02 in about 95% of scenarios, and excedeed 0.03 in only 1% of

cases. However, while the bias of Portnoy’s estimator was fairly the same at all

quantiles, that of al regression increased sharply at large p. Yet, the absolute

bias at the 8th decile was generally smaller than 0.03, which might be considered

acceptable in most applications. Empirical evidence suggests that one should

not estimate quantiles larger than 1− pc, where pc is the proportion of censored

data.

Remarkably, the al estimator exhibits empirical consistency, as the absolute

bias seems to decrease with the sample size. Moreover, its mse appeared to be

nearly always smaller than that of Portnoy’s estimator.
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To have a term of comparison, we also applied ordinary quantile regression

ignoring censoring. With this approach, we found a significant bias even at small

quantiles. For instance, with n = 1000, the bias at the 2nd decile was larger than

0.05 in more than 70% of scenarios. At larger quantiles, the bias excedeed 0.10

in most scenarios, and was commonly above 0.15. This demonstrated that the

relatively small bias observed for al regression could not be attributed to the

fact that censoring was ignorable.
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Table 1: Summary statistics of bias

p = 0.2 p = 0.4 p = 0.6 p = 0.8

al por qr al por qr al por qr al por qr

n = 250 1st quartile .01 .01 .04 .01 .01 .08 .01 .01 .11 .02 .01 .10

median .02 .01 .05 .01 .01 .10 .02 .01 .12 .03 .01 .11

3rd quartile .02 .01 .07 .02 .01 .11 .03 .01 .14 .04 .01 .12

centile 0.90 .02 .02 .08 .02 .02 .12 .04 .02 .15 .05 .02 .13

centile 0.95 .03 .02 .08 .03 .02 .13 .04 .02 .15 .05 .02 .14

centile 0.99 .03 .03 .09 .04 .03 .15 .05 .03 .17 .06 .03 .15

n = 500 1st quartile .00 .00 .05 .00 .00 .09 .01 .00 .11 .02 .00 .10

median .01 .01 .06 .01 .01 .10 .01 .01 .12 .02 .01 .11

3rd quartile .01 .01 .07 .01 .01 .11 .02 .01 .13 .03 .01 .12

centile 0.90 .01 .01 .08 .02 .01 .12 .03 .01 .14 .03 .01 .13

centile 0.95 .01 .01 .09 .02 .01 .13 .03 .01 .15 .04 .01 .13

centile 0.99 .02 .02 .09 .03 .02 .15 .04 .02 .16 .04 .02 .14

n = 1000 1st quartile .00 .00 .05 .00 .00 .09 .01 .00 .12 .01 .00 .10

median .00 .00 .06 .01 .00 .10 .01 .00 .12 .02 .00 .11

3rd quartile .00 .00 .07 .01 .00 .11 .02 .00 .13 .02 .00 .11

centile 0.90 .01 .01 .08 .01 .01 .12 .02 .01 .14 .03 .01 .12

centile 0.95 .01 .01 .09 .02 .01 .13 .02 .01 .15 .03 .01 .13

centile 0.99 .01 .01 .10 .02 .01 .14 .03 .01 .16 .03 .01 .14

Descriptive statistics of the absolute bias (equation 12) of asymmetric Laplace (al), Portnoy’s

(por) and standard quantile regression (qr) estimators of βp, across 10, 000 simulation

scenarios, at p = (0.2, 0.4, 0.6, 0.8) and three different sample sizes, n = 250, 500, 1000.
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Table 2: Summary statistics of root mse

p = 0.2 p = 0.4 p = 0.6 p = 0.8

al por qr al por qr al por qr al por qr

n = 250 1st quartile .07 .07 .07 .08 .09 .11 .09 .09 .14 .08 .08 .14

median .07 .07 .08 .08 .09 .12 .09 .10 .15 .09 .09 .14

3rd quartile .07 .08 .09 .08 .09 .13 .09 .10 .16 .09 .09 .15

centile 0.90 .08 .08 .09 .09 .10 .14 .09 .10 .16 .10 .10 .15

centile 0.95 .08 .09 .10 .09 .10 .15 .10 .11 .17 .11 .12 .16

centile 0.99 .09 .10 .10 .09 .10 .16 .10 .12 .18 .12 .14 .16

P(mse > mseal) .89 .74 .99 1.0 .96 1.0 .57 1.0

n = 500 1st quartile .05 .05 .06 .06 .06 .10 .06 .06 .13 .06 .06 .12

median .05 .05 .07 .06 .07 .11 .06 .07 .14 .06 .06 .13

3rd quartile .05 .05 .08 .06 .07 .12 .07 .07 .14 .06 .06 .13

centile 0.90 .05 .06 .09 .06 .07 .13 .07 .07 .15 .07 .07 .14

centile 0.95 .05 .06 .09 .06 .07 .14 .07 .07 .16 .07 .07 .14

centile 0.99 .06 .07 .10 .07 .07 .15 .07 .08 .16 .08 .09 .15

P(mse > mseal) .97 .97 .98 1.0 .94 1.0 .56 1.0

n = 1000 1st quartile .03 .04 .06 .04 .05 .10 .04 .05 .12 .04 .04 .11

median .03 .04 .07 .04 .05 .11 .05 .05 .13 .04 .04 .12

3rd quartile .03 .04 .08 .04 .05 .12 .05 .05 .14 .05 .04 .12

centile 0.90 .04 .04 .08 .04 .05 .13 .05 .05 .15 .05 .05 .13

centile 0.95 .04 .04 .09 .05 .05 .13 .05 .05 .15 .05 .05 .13

centile 0.99 .04 .04 .10 .05 .05 .15 .05 .05 .16 .05 .06 .14

P(mse > mseal) .97 1.0 .98 1.0 .89 1.0 .48 1.0

Descriptive statistics of the root mean squared error (equation 13). We also report the

proportion of scenarios in whichthe mse of al regression was smaller than that of other

estimators.
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Figure 4: Boxplot of the bias (equation 12) of al and Portnoy’s estimators of βp, at

different values of p, for n = 250, 500, and 1000).
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Figure 5: Boxplot of the root mse (equation 13) of al and Portnoy’s estimators of βp,

at different values of p, for n = 250, 500, and 1000.
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5 Using Laplace regression for big data

While computation times of al regression grow linearly along with the sample

size, those of other methods grow at an approximately quadratic rate. Addi-

tionally, inference on estimators like Portnoy’s is bootstrap-based, as no simple

closed-form asymptotic covariance matrix is available. Instead, inference on al

regression can be performed by treating equations (5) and (6) as estimating

equations, and using standard methods-of-moment asymptotic theory.

We considered a scenario like those described in Section 4, with six covariates

plus intercept. For different values of n, Figure 6 shows the average computa-

tion time to fit the model once, using a 64-bit operating system with dual core

processor 2.80/2.93 GHz, 4,00 GB RAM.

With n = 50, 000, al regression runs in about 0.5 seconds, while Portnoy’s

method takes, on average, almost 4 minutes. With n = (100, 250, 500) × 103

(not shown in Figure 6), average computation times to fit al regression are 1.3,

3.7, and 8.1 seconds, respectively. Based on extrapolation, we estimated that

Portnoy’s method will run in about 16 minutes with n = 100, 000; 1h40’ with

n = 250, 000; and 6h50’ with n = 500, 000. Note that the code for al regression

is written in plain R language, while Portnoy’s estimator, as implemented in the

quantreg R package, uses an efficient Fortran routine.

Imagine a plausible research situation, and suppose to estimate the deciles

(p = 0.1, 0.2, . . . , 0.9) of a censored outcome, and to formulate 20 different re-

gression models. Using al, each quantile is estimated separately and the fitting

routine is called 9 × 20 = 180 times. With Portnoy’s method, all quantiles are

estimated at once, but bootstrap is needed to compute standard errors. Using

R = 100 bootstrap replications, the fitting routine is called 20 × 100 = 2, 000

times. Assuming a sample size n = 500, 000, which is not uncommon in epidemi-



LAPLACE REGRESSION FOR CENSORED DATA 20

n

av
g.

 c
om

pu
ta

tio
n 

tim
e 

(m
in

)

●
●

●

●

●

●

●

●

●

●

0
1

2
3

4

10,000 20,000 30,000 40,000 50,000

●

AL
Portnoy

Figure 6: Average computation times for Portnoy’s and Laplace regression estimators,

at different values of n. The lines represent a quadratic interpolation.

ological studies, the analysis can be completed in about 24 minutes using Laplace

regression, or in one and a half year using Portnoy’s method.

Peng and Huang’s (2008) (also implemented in quantreg) and Wang and

Wang’s (2009) methods are even slower than Portnoy’s. Frumento and Bottai’s

(2016) estimator, which is implemented in the ctqr package, is relatively fast

and does not require bootstrap. However, it is not nearly as fast as the described

Laplace regression, which stands as the only computationally convenient method

to fit censored quantile regression with large datasets.
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6 Conclusions

The interest in censored Laplace regression is motivated by three main reasons.

First, a biased estimator is found in practice to be almost perfectly unbiased,

which makes it intriguing to investigate its properties. Second, compared with

the existing methods, Laplace regression is much simpler computationally. In

particular, no estimation of FT is needed, thus avoiding complicated and time-

consuming procedures; and no bootstrap is required to perform inference. This

makes it suitable to be applied to big data, which represents a desirable feature in

many applied situations. Third, differently from the other mentioned approaches,

Laplace regression can be easily extended to handle truncated data, include frailty

terms, and model non linear quantiles.

We discussed the role of the scale parameter of the al distribution, and

demonstrated that non-trivial conditions for unbiasedness exist. Such conditions,

however, do not corresponds to those imposed by likelihood maximization.

In a wide simulation study, we showed that maximizing the likelihood of the

Laplace distribution yields very reliable estimators of quantiles, despite model

misspecification. This is consistent with previous findings and justifies using this

method in real-data applications. This form of robustness is not shared by other

distributions: for example, fitting a Normal model on censored data would not

yield a good estimator of the mean, unless the true distribution is Normal or

very close to it.

Specifying how covariates enter σp(x) is very important in practice. A poor

modeling of σp(x) may exacerbate model misspecification and cause additional

bias. On the other hand, parametrizing σp(x) as a flexible function of covariates

permits achieving a good fit of the data, making model misspecification less

relevant.
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An R code for Laplace regression is provided upon request to the Authors.

A Stata command is also available (Bottai and Orsini, 2013).
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