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Abstract

This paper introduces the event-probability function, a measure of occurrence of
an event of interest over time, defined as the instantaneous probability of an event
at a given time point conditional on having survived until that point. Unlike the
hazard function, the event-probability function defines the instantaneous probability
of the event. We explore its properties and interpretation and highlight its connection
with other distributions functions. We propose convenient methods for modeling the
possible effect of covariates, including flexible proportional-odds models and flexible
power-probability models, that allow for censored and truncated observations. We
contrast the proposed methods with other popular methods, and discuss the theo-
retical and computational aspects of parameter estimation. Finally, we evaluate the
mortality risk in patients with metastatic renal carcinoma from a randomized clinical
trial.
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1 Introduction

Measuring the occurrence of events, such as death, over time is a central objective in many

areas of science. The survival function and the hazard function uniquely define the time-

to-event variable of interest and have long been used in applications. In particular, the

interest in the hazard function has much grown since the introduction of methods like Cox

regression. While the interpretation of the survival function is intuitive to researchers and

lay people alike, that of the hazard function is not. In the scientific literature, hazards

are often mistaken for probabilities, and in interpreting study findings the word “risk” is

usually preferred to word “hazard”. For example, a hazard ratio of 1.2 may be read as

an increase of 20% in risk. This practice dates long back and has led many a study to

misplaced conclusions. Sutradhar and Austin (2018) recently discussed its relevance and

magnitude and pointed out that contrary to published guidelines (Guidelines, 2019) and

recommendations (Oakes and Peterson, 2008; Sedgwick, 2012), the mistaken interpretation

of hazards is ubiquitous.

This paper introduces the event-probability function, which properly defines the instan-

taneous probability of an event. Unlike the hazard function, the event-probability function

is bounded between zero and one and can be interpreted as risk. In the following sections

we explore its properties and interpretation, highlight its connection with other distribu-

tions functions, propose convenient strategies for modeling the possible effect of covariates

and contrast them with other popular existing methods, and discuss the theoretical and

computational aspects of parameter estimation. The proposed event-probability models

are applied in the evaluation of the mortality risk in patients from a randomized clinical

trial with metastatic renal carcinoma.
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2 The event-probability function

We consider a time-to-event variable T with support on the positive real half-line. Let

F (t) = Pr(T ≤ t), S(t) = 1 − F (t), f(t) = dF (t)/dt, h(t) = f(t)/S(t), and H(t) =∫
h(t)dt = − log[S(t)], indicate the cumulative distribution function, survival function,

the probability density function, the hazard function, and the cumulative hazard function,

respectively. The functions F (t), S(t), and f(t) are defined over the entire real line, R,

while h(t) and H(t) are defined over the set {t ∈ R : S(t) > 0}. For clarity, we defer

discussing censoring and truncation to Section 4.

2.1 Definition of the event-probability function

The probability of occurrence of an event over the time interval (t, t + δ), with δ > 0,

conditional on T > t, is

Pr[T < t+ δ | T > t] = 1− S(t+ δ)

S(t)
(1)

defined over the set {t ∈ R : S(t) > 0}. Bottai (2017) defined the average probability of

occurrence of the event over the interval (t, t+ δ), conditional on T > t, as

G(t, t+ δ) = 1−
[
S(t+ δ)

S(t)

]1/δ

(2)

An heuristic interpretation of the probability defined in equation (2) and that of the fol-

lowing related definitions is given in Section 2.2. Because S(0) = 1, the survival function

can be written as

S(t) = [1−G(0, t)]t (3)
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Bottai (2017) also defined the instantaneous probability as the limit of the average proba-

bility over shrinking time intervals

g(t) = lim
δ→0

G(t, t+ δ) (4)

As δ tends to zero, the average probability G(t, t+δ) tends to the function g(t), whereas the

conditional probability in equation (1) tends to zero. Henceforth, we refer to the function

g(t) as the event-probability function.

To simplify the mathematical expressions in the remainder of this paper, we define the

average survival functions and the survival-probability function respectively as

Ḡ(t) = 1−G(t)

ḡ(t) = 1− g(t)

2.2 Interpretation of the event-probability function

If the probability of surviving two days is S(2) = 0.36, then from equation (2) the average

probability per day is G(0, 2) = 1 − 0.361/2 = 0.40. Applied every day, this average daily

probability yields the two-day probability S(2) = [1 − G(0, 2)]2 = (1 − 0.40)2 = 0.36, as

per equation (3). The event-probability function, g(t), can be interpreted as the average

probability over infinitely short time intervals, or instantaneous probability. For example,

if an event occurs with a constant, instantaneous daily probability of 0.40, then g(t) = 0.40,

for all t > 0, and the probability of surviving two days is ḡ(t)2 = (1− 0.40)2 = 0.36.

An analogy with speed may facilitate understanding. If one travels at the constant,

instantaneous speed of 10 miles an hour, one will cover 20 miles in two hours. The constant

speed in this example is analogous to a constant instantaneous probability, which applied

every instant yields the nominal occurrence probability over any given interval of time.
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Bottai (2017) showed that the hazard function can be seen as the limit of the average

number of events divided by the cumulative person-time over a shrinking time interval,

h(t) = lim
δ→0

S(t)− S(t+ δ)∫ t+δ
t

S(u)du
(5)

In the literature, the hazard function often is defined as

h(t) = lim
δ→0

P (t < T ≤ t+ δ|T > t)

δ
(6)

In general, the arguments of the limits in equations (5) and (6) are unequal,

P (t < T ≤ t+ δ|T > t)

δ
=
S(t)− S(t+ δ)

δS(t)
6= S(t)− S(t+ δ)∫ t+δ

t
S(u)du

because δS(t) 6=
∫ t+δ
t

S(u)du. Nevertheless, the hazard function can be defined using either

of the limits in equations (5) and (6). Note that the arithmetic mean conditional probability

P (t < T ≤ t+δ|T > t)/δ = [1−P (T > t+δ|T > t)]/δ, whose limit is used in the definition

of the hazard function in equation (6), differs from the geometric average probability in

equation (2), 1− [S(t+ δ)/S(t)]1/δ = 1− P (T > t+ δ|T > t)1/δ, whose limit is used in the

definition of the event-probability function in equation (4). The geometric mean is more

appropriate than the arithmetic mean in summarizing the probability of events (Bottai,

2017) and it has long been used in science (among others, Gompertz, 1825).

Bottai (2017) also showed that

g(t) = 1− exp[−h(t)] (7)

The above equality implies the following corollary, whose proof is given in Appendix A.

Corollary 1. Over the support of the time-to-event variable T , T = {t ∈ R : f(t) > 0},
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the event-probability function is strictly smaller than the hazard function, g(t) < h(t).

The above corollary implies that the event-probability function is never equal to the hazard

function. The former can be interpreted as an instantaneous probability, while the latter

should never be interpreted as such. To further understanding of the difference between

these two functions, consider the following two identities

g(t) = 1− exp[−h(t)]

F (t) = 1− exp[−H(t)]

The above identities show that hazard is to the event-probability what the cumulative haz-

ard is to the cumulative distribution. The event-probability and the cumulative distribution

are probabilities, and the hazard and the cumulative hazard are not.

The differing interpretation of the event-probability and the hazard is consequential. For

example, suppose the probability of an event to occur in a month is equal to g0(t) = 0.5 in

a population and g1(t) = 0.9 in another population. The event-probability ratio, or simply

risk ratio, is

RR(t) =
g1(t)

g0(t)
≈ 1.8

and the event-odds ratio, or simply odds ratio, is

OR(t) =
g1(t)/ḡ1(t)

g0(t)/ḡ0(t)
≈ 9.0

Because the event-probabilities can be interpreted as risks, their ratio can be interpreted

as the relative risk, or risk ratio. From equation (7), the corresponding hazard functions

are equal to h0(t) = − log(1 − 0.5) ≈ 0.7 and h1(t) = − log(1 − 0.9) ≈ 2.3, respectively.

These measures should not be interpreted as risks, and therefore their ratio, 2.3/0.7 ≈ 3.3,

should not be interpreted as a risk ratio.
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3 Modeling event-probabilities

The average probability G(t, t+ δ) and the event-probability g(t) define the distribution of

the random variable T . The average probability function is related to the other distribution

functions through equation (2) as follows

F (t) = 1− Ḡ(0, t)t

S(t) = Ḡ(0, t)t

f(t) = −Ḡ(0, t)t
{
tḠ′(0, t)/Ḡ(0, t) + log[Ḡ(0, t)]

}
h(t) = −tḠ′(0, t)/Ḡ(0, t)− log[Ḡ(0, t)]

H(t) = −t log Ḡ(0, t)

where Ḡ′(0, t) indicates the first derivative of Ḡ(0, t) with respect to t, Ḡ′(0, t) = ∂Ḡ(0, t)/∂t.

The event-probability function is related to the other distribution functions through

equation (7) as follows

F (t) = 1− exp
{∫ t

0
log[ḡ(u)]du

}
(8)

S(t) = exp
{∫ t

0
log[ḡ(u)]du

}
(9)

f(t) = − log[ḡ(t)] exp
{∫ t

0
log[ḡ(u)]du

}
(10)

h(t) = − log[ḡ(t)] (11)

H(t) = −
∫ t

0
log[ḡ(u)]du (12)

The following are examples of known distributions specified by their event-probability

functions: ḡ(t|θ) = exp(−1/θ) defines an exponential distribution with scale parameter

θ > 0; ḡ(t|θ, η) = exp[−(t/θ)η−1η/θ] defines a Weibull distribution with scale param-

eter θ > 0 and shape parameter η > 0; ḡ(t|θ, η) = exp[−θη exp(θt)] defines a Gom-

pertz distribution with scale parameter θ > 0 and shape parameter η > 0; finally, if
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ḡ[log(t|θ, µ)] = exp {− exp [(log(t)− µ)/θ] /θ}, then log(T ) follows a Gumbel distribution

with location parameter µ ∈ R and scale parameter θ > 0.

Throughout this paper, any parameter can be assumed to depend on a q-dimensional

vector of covariates X ∈ Rq. For example, a positive scale parameter can be defined as

θ = exp(X ′β) for a parameter vector β ∈ Rq.

The following lemma shows the relationship between the event-probability function and

the product-limit definition of the survival function. The proof is given in the Appendix.

Lemma 1. Let u1 < u2 < . . . < uk+1 be an ordered set of distinct values from u1 = 0 to

uk+1 = t, forming k intervals of length δk = ui+1−ui, with i = 1, . . . , k. From equation (9),

assuming log[ḡ(u)] is Riemann-integrable,

S(t) = lim
k→∞

k∏
i=1

ḡ(ui)
δk

As previously shown by Bottai (2017), the above result is related to the Kaplan-Meier

estimator of the survival function, where the event-probability are the steps of the Kaplan-

Meier curve. The value ḡ(t)δk is an approximation of G(t, t + δ) over the finite interval

(t, t+ δ).

The following corollary of Lemma 1 gives another expression for the cumulative hazard

function that may be used in the likelihood discussed in Section 4. The proof follows di-

rectly from that of Lemma 1 and is omitted.

Corollary 2. Under the conditions stated in Lemma 1,

H(t) = − log[S(t)] = lim
k→∞

k∑
i=1

δk log[ḡ(ui)]
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The following lemma gives few more expressions for the cumulative hazard function that

may inform modeling strategies. The proof is given in the Appendix.

Lemma 2. The cumulative hazard can be written as

H(t) = −t log[ḡ(t)] +

∫ t

0

uḡ′(u)

ḡ(u)
du

H(t) =

∫ ḡ(t)

ḡ(0)

ḡ−1(u)/u du−
[
log(u)ḡ−1(u)

]∣∣ḡ(t)
ḡ(0)

H(t) =

∫ ḡ(t)

ḡ(0)

− log(u)

ḡ′[ḡ−1(u)]
du

The following Sections 3.1 and 3.2 describe two convenient classes of models, the proportional-

event-odds model and the power-probability model, respectively.

3.1 Proportional-odds model

Because the event-probability function is a probability, and as such bounded between zero

and one, it is natural to start by considering proportional-odds models. These can be

defined as
g(t|θ)

1− g(t|θ)
=

g0(t)

1− g0(t)
θ (13)

The baseline event-probability function is indicated by g0(t) and the proportionality pa-

rameter by θ > 0. This model corresponds to the survival-probability function

ḡ(t|θ) =

[
g0(t)

1− g0(t)
θ + 1

]−1

and to the hazard function

h(t|θ) = log

[
g0(t)

1− g0(t)
θ + 1

]
9



Note that the proportional-odds model in equation (13) is different from other models that

in the literature are also referred to as proportional-odds models (Bennett, 1983; Kirmani

and Gupta, 2001), which replace the event-probability function g(t|θ) with the survival

function S(t|θ).

We first define the simplest proportional-odds model, which assumes that the baseline

odds are a linear function of time,

g(t|θ)
1− g(t|θ)

= θt

The above model implies the following distribution functions, which do not belong to any

known family,

ḡ(t|θ) = (θt+ 1)−1

h(t|θ) = log(θt+ 1)

H(t|θ) = (1/θ + t) log(θt+ 1)− t

S(t|θ) = exp(t)(θt+ 1)−1/θ−t

f(t|θ) = exp(t)(θt+ 1)−1/θ−t log(θt+ 1)

We now consider a model with nonlinear baseline odds functions

g(t|θ)
1− g(t|θ)

= θtη
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which implies the following distribution functions, which do not belong to any known family,

ḡ(t) = (θtη + 1)−1

h(t) = log(θtη + 1)

H(t) = t[2F1(−θtη)η + log(θtη + 1)− η]

S(t) = exp{−t[2F1(−θtη)η + log(θtη + 1)− η]}

f(t) = log(θtη + 1) exp{−t[2F1(−θtη)η + log(θtη + 1)− η]}

where 2F1 indicates the generalized hypergeometric function

2F1(−θtη) =
∞∑
i=0

(1/η)i
(1 + 1/η)i

(−θtη)i

i!

with (a)i = 1 if i = 0 and (a)i = a(a+ 1)(a+ 2) · · · (a+ i− 1) if i > 0.

Finally, we consider a convenient flexible parametric model. The proportional-odds

model defined in equation (13) can be written through a logarithmic transform as

log

[
g(t|θ)

1− g(t|θ)

]
= log

[
g0(t)

1− g0(t)

]
+ log(θ)

The log-odds transform of the baseline function g0(t) can be modeled through flexible

parametric functions

log

[
g(t|θ, η)

1− g(t|θ, η)

]
= s(t)′η + log(θ) (14)

where η represents an r-dimensional parameter vector and

s(t) = [s1(t), . . . , sr(t)]
′ (15)

is a basis of r functions of t, such as Legendre polynomials or regression cubic splines.

Because of the log-odds transform on the left-hand side of equation (14) can take on
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values on the entire real line, the expression on the right-hand side is unconstrained. This

confers model (14) desirable flexibility, as illustrated in the real-data analysis presented in

Section 5. The use of flexible parametric models has been advantageously utilized in many

other settings (among others, Royston and Parmar, 2002).

3.2 Power-probability (proportional-hazard) model

This section describes power-probability models, as a possible alternative to the proportional-

odds models presented in Section 3.1. A power-probability model is defined as

ḡ(t|θ) = ḡ0(t)θ (16)

for a baseline average survival function ḡ0(t) and power parameter θ > 0. If θ = 1, then

g(t) = g0(t). If it exists, the k-th derivative, k ∈ N, of ḡ(t|θ) with respect to θ is

dk

dθk
ḡ(t|θ) = ḡ(t|θ) log[g0(t)]k

Because log[g0(t)] is negative, the above expression indicates that the event-probability

function is decreasing and convex with respect to the parameter θ with the following limit

behavior

lim
θ→0

g(t) = 1− lim
θ→0

ḡ(t) = 0

lim
θ→∞

g(t) = 1− lim
θ→∞

ḡ(t) = 1

Larger values of θ correspond to larger values of g(t|θ) and therefore larger probabili-

ties of the event. The power-probability model defined in equation (16) corresponds to a

proportional-hazard model

h(t|θ) = − log[ḡ(t|θ)] = − log[ḡ0(t)]θ = h0(t)θ
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with baseline hazard function h0(t) = − log[ḡ0(t)] and proportionality parameter θ > 0.

Traditional parametric and semi-parametric models can be used to estimate the parameter

θ. A hazard ratio θ corresponds to the following event-probability

g(t|θ) = 1− ḡ0(t|θ)θ (17)

to the following risk ratio

RR(t|θ) =
g(t|θ)
g0(t|θ)

=
1− ḡ0(t|θ)θ

1− ḡ0(t|θ)
(18)

and to the following odds ratio

OR(t|θ) =
g(t|θ)/[1− g(t|θ)]
g0(t|θ)/[1− g0(t|θ)]

=
[1− ḡ0(t|θ)θ]/ḡ0(t|θ)θ

[1− ḡ0(t|θ)]/ḡ0(t|θ)
(19)

Table 6 shows g(t|θ), RR(t|θ), and OR(t|θ), for different baseline average probabilities

g0(t|θ), corresponding baseline hazards h0(t|θ), and probability powers (hazard ratios) θ.

The power-probability model in equation (16) can be written through a complementary-

log-log model for the average survival function

log{− log[ḡ(t|θ)]} = log{− log[ḡ0(t)]}+ log(θ)

which corresponds to a logarithmic transform of the hazard function log[h(t|θ)] = log[h0(t)]+

log(θ). As for the proportional-odds model described in Section 3.1, the baseline complementary-

log-log function can be modeled through flexible parametric functions

log{− log[ḡ(t|θ, η)]} = s(t)′η + log(θ) (20)

where η represents an r-dimensional parameter vector and s(t) is defined in equation (15).

Similarly to the log-odds transform in equation (14), the complementary-log-log transform

allows the expression on the right-hand side of equation (20) to take on values on the

entire real line R, which can make this model practical in many applications. We apply the

power-probability model in equation (20) in the real-data analysis reported in Section 5.
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4 Estimation and computation

In addition to the notation defined in Section 2, let C be a right-censoring random variable

and Z a left-truncating random variable, both with support on the positive real half-line.

Let X ∈ Rq be a q-dimensional vector of covariates. We can observe the random vector

(Y, Z,D,X) only if Y > Z, where Y = min(T,C) and D = I(T ≤ C).

We consider a random sample of n covariate vectors x1, . . . , xn, possibly right-censored

and left-truncated observations y1, . . . , yn, left-truncating observations z1, . . . , zn, and event

indicators d1, . . . , dn. The log-likelihood function can be defined through the conditional

hazard functions given the covariates and a parameter vector θ as

ln(θ) =
n∑
i=1

di log[h(yi|xi, θ)]−H(yi|xi, θ) +H(zi|xi, θ) (21)

The above log-likelihood function can also be written under any specification of g(yi|xi, θ)

through equations (11) and (12) as

ln(θ) =
n∑
i=1

di log{− log[ḡ(yi|xi, θ)]}+

∫ yi

0

log[ḡ(u|xi, θ)]du−
∫ zi

0

log[ḡ(u|xi, θ)]du (22)

For example, if we assume the proportional-odds model defined in equation (13) with

θ = exp(X ′β),
g(t|xi, β)

1− g(t|xi, β)
= exp(x′iβ)t (23)

then the log-likelihood function in equation (21) has closed-form expression with

h(t|xi, β) = log[exp(x′iβ)t+ 1] (24)

H(t|xi, β) = [exp(−x′iβ) + t] log[exp(x′iβ)t+ 1]− t (25)

When the integral in equation (12) does not have closed-form expression, it can be numer-

ically approximated.
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If it is of interest to define a parametric model Ḡ(0, t|θ) for the average-probability

function defined in equation (2), instead of the probability-event function, the log-likelihood

function is

ln(θ) =
n∑
i=1

di log

{
Ḡ′(0, yi|θ)
G(0, yi|θ)

yi + log[Ḡ(0, yi|θ)]
}
− yi log[Ḡ(0, yi|θ)] + zi log[Ḡ(0, zi|θ)]

(26)

The maximum likelihood estimator for θ is defined as the maximizer of ln(θ), defined

in equation (21) or equation (26), over a parameter space Θ

θ̂n = arg max
θ∈Θ

ln(θ) (27)

Inference on θ can be made within the theoretical framework of maximum likelihood esti-

mation, which makes θ̂n an efficient and practical estimator. The following two theorems

state its consistency and asymptotic normality, respectively. Their proofs follows standard

likelihood theory, and we omit them for brevity.

Theorem 1 (Consistency). If the variables t1, . . . , tn are independent and identically dis-

tributed as f(t|θ) in equation (10), the parameter space Θ is compact, the true value θ0

is identified θ 6= θ0 ⇔ f(t|θ) 6= f(t|θ0), θ0 = arg max
θ∈Θ

Eθ0ln(θ), the likelihood function is

continuous in θ, Eθ0ln(θ) exists, the likelihood function is such that ln(θ)/n converges in

probability to Eθ0ln(θ) uniformly in θ ∈ Θ, i.e. lim
n→∞

P (sup
θ∈Θ
|ln(θ)/n−Eθ0ln(θ)| < ε) = 1 for

any ε > 0, then the sequence θ̂n converges in probability to θ0.

Theorem 2 (Asymptotic normality). If in addition to the assumptions stated in The-

orem 1, θ is in the interior of the parameter space Θ, the likelihood function is twice

differentiable in a neighborhood of θ0, integration and differentiation are interchangeable,
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the information matrix I(θ0) = Eθ0(− ∂2ln(θ)/∂θ∂θ′|θ0) exists and is non-singular, then the

sequence
√
n(θ̂n − θ0) converges in distribution to a normal variable with mean zero and

variance I−1(θ0).

Given a set of data, the value of θ̂ can be computed with maximization functions imple-

mented in popular software programs, such as R, Matlab, Stata, and SAS. These programs

also allow numerical evaluation of the integral in equation (12), when this does not have

closed-form. The Stata code used for the analyses reported in Section 5 is available in the

online supplementary material.

5 Survival in metastatic renal carcinoma patients

In this section, we use proportional-odds models and power-probability models in the eval-

uation of survival in patients with metastatic renal carcinoma. The data arose from a

multi-center randomized controlled trial with 350 patients, assigned to either subcutaneous

interferon-α (IFN) or oral medroxyprogesterone (MPA) between 1992 and 1997. The pri-

mary endpoint was overall mortality. Three patients had no follow-up data. By June 2001,

322 patients died (93%). The median follow-up time was approximately seven months. A

detailed description of patients characteristics, treatment, and follow-up can be found in

Medical Research Council Renal Cancer Collaborators (1999) and Royston et al. (2004).

All the models were estimated by maximizing the likelihood function with the user-

written stpreg command in Stata, a simple adaptation of the more general stgenreg

command (Crowther and Lambert, 2013). The stpreg command improves on the earlier

approach proposed by Discacciati and Bottai (2017), in that it does not require splitting of
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the data into risk sets or approximating the event-function on a discrete set of time points.

The code to reproduce the results is available in the online supplementary material.

5.1 Proportional-odds model

In this subsection we estimate four, increasingly complex, proportional-odds models. The

estimates are shown in Table 2. We started by modeling the odds of death for the two treat-

ment groups with a proportional-odds model that assumed constant event-odds throughout

the follow-up time,

log

[
g(t|η, θ)

1− g(t|η, θ)

]
= η0 + θ1trt (28)

where the name “trt” indicates the binary treatment indicator that takes on value 0 for the

patients randomized to MPA and 1 for those randomized to IFN. The estimated mortality

odds was equal to exp(η̂0) = 1.79 in MPA patients and to exp(η̂0 + θ̂1) = 1.07 in IFN

patients. The mortality odds ratio (OR) was exp(θ̂1) = 0.60 with a 95% confidence interval

(95% CI) equal to (0.43, 0.83). The model assumed that the OR was constant over the

entire duration of the follow-up. Under this model, the odds of death in the IFN group

was estimated to be 40% lower than that in the MPA group.

We relaxed the assumption of constant mortality odds over the follow-up period and let

the log-mortality odds be a linear function of log(t) with equal slope for the two treatment

groups,

log

[
g(t|η, θ)

1− g(t|η, θ)

]
= η0 + η1 log(t) + θ1trt (29)

The estimate for the OR comparing the two treatment groups was equal to exp(θ̂1) =

0.63 (95% CI: 0.45, 0.87). Under this model, we estimated a (1 − exp(η̂1)) × 100 = 18%

decrease in the mortality odds for every one log-year increase in follow-up time in both
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treatment groups.

We then relaxed also the linearity assumption by applying a restricted cubic splines

transform (RCS) with two degrees of freedom to log-time. The three knots were placed

at the minimum, median and maximum of the observed distribution of the uncensored

log-time values. We let s1(log(t)) ≡ log(t) and s2(log(t)) be the first and second RCS

transform, respectively. The model was

log

[
g(t|η, θ)

1− g(t|η, θ)

]
= η0 + η1 log(t) + η2s2(log(t)) + θ1trt (30)

The probability of dying predicted by the model defined in equation (30) is displayed

in Figure 1, panel C. After a steep increase in the first 3 months after randomization, the

probability in MPA patients decreased from about 0.7 to 0.3 during the follow-up period.

The OR was estimated to be exp(θ̂1) = 0.63 (95% CI: 0.45, 0.89). The model defined in

equation (29) was nested within that defined in equation (30), as the former was equal to

the latter when η2 is equal to zero. Testing the null hypothesis H0 : η2 = 0 helped select

the better-fitting model, with small p-values supporting the latter model. In our data, the

p-value from the Wald’s test was less than 0.001, suggesting a better fit of model defined

in equation (30).

Finally, we relaxed the assumption of proportionality in the odds between IFN and

MPA treatment groups, by including the interaction (product) terms between the two RCS

covariates and the binary treatment indicator.

log

[
g(t|η, θ)

1− g(t|η, θ)

]
= η0 +η1 log(t)+η2s2(log(t))+θ1trt+θ2 log(t)trt+θ3s2(log(t))trt (31)

The model defined in equation (30) was nested within that in equation (31), as the latter

was equal to the former when θ2 = θ3 = 0. The p-value from the two-degree-of-freedom
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Wald’s test for the hypothesis that the coefficients of the two interaction terms were jointly

equal to zero was equal to 0.55, providing insufficient evidence of a time-varying OR.

5.2 Power-probability (proportional-hazards) model

We repeated the steps taken in the previous section, this time using power-probability

models. The estimates are shown in Table 3. We started by including the binary treatment

indicator as the only covariate, thus assuming a constant event-probability throughout the

follow-up time. The model was

log{− log [1− g(t|η, θ)]} = η0 + θ1trt (32)

The estimated probability of dying was 1 − exp(− exp(η̂0)) = 0.64 on MPA and 1 −

exp(− exp(η̂0 + θ̂1)) = 0.52 on IFN. The power parameter was estimated to be exp(θ̂1) =

0.71 (95% CI: 0.57, 0.88), which meant that the survival-probability at any given time

point of the follow-up in MPA patients was equal to that in IFN patients raised by a power

of 0.71. Because the power was smaller than one, IFN patients had a smaller mortality

risk than MPA patients. The parameter θ1 can also be interpreted as the hazard ratio

for IFN versus MPA patients. The model defined in equation (32) implies an exponential

distribution for T with parameter λ = exp(η0 + θ1trt).

Next, we let the complementary log-log transform of death probability vary over time

as a linear function of log(t) with the following power-probability model,

log{− log [ḡ(t|η, θ)]} = η0 + η1 log(t) + θ1trt (33)

The estimated power parameter was equal to exp(θ̂1) = 0.73 (95% CI: 0.58, 0.91), again

indicating a better survival probability in IFN patients. By using equation (11), the model
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defined in equation (33) can be shown to correspond to Weibull proportional-hazards model

with a non-standard parametrization. To see this, let us consider the log-hazard function

log(h̃(t|υ, γ0, γ1)) of a Weibull distribution with shape parameter υ and scale parameter

λ = exp(γ0 + γ1trt),

log(h̃(t|υ, λ0, λ1)) = γ0 + γ1trt + log(υ) + (υ − 1) log(t) (34)

The right-hand side of equation (33) is equal to the right-hand side of equation (34)

with the alternative parameterization η0 = γ0 + log(υ), η1 = (υ − 1), and θ1 = γ1.

Next, we relaxed the assumption that the complementary log-log transform of the event-

probability was a linear function of log(t), by including the two RCS covariates s1(log(t)) ≡

log(t) and s2(log(t)) introduced in the previous section. The power-probability model was

log{− log [ḡ(t|η, θ)]} = η0 + η1 log(t) + η2s2(log(t)) + θ1trt (35)

The Wald’s test for H0 : η2 = 0 gave a p-value less than 0.001, providing evidence of

non-linearity on the complementary log-log scale. We therefore concluded that the model

defined in equation (35) fitted the data better than that in equation (33). The power

parameter indicated a better survival in the IFN treatment arm (exp(θ̂1) = 0.74 (95% CI:

0.60, 0.92).

Lastly, we allowed the power parameter to vary over time by including interaction terms

between the two RCS covariates and the binary treatment indicator. The model was

log{− log [ḡ(t|η, θ)]} = η0+η1 log(t)+η2s2(log(t))+θ1trt+θ2 log(t)trt+θ3s2(log(t))trt. (36)

The p-value from the Wald test for the hypothesis H0 : θ2 = θ3 = 0 was 0.57, and we

concluded that model (36) did not significantly improve the fit of the data over model (35).
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We compared the goodness of fit of all the proportional-odds models and power-probability

models with the Akaike Information Criterion (AIC). The proportional-odds model defined

in equation (30) showed the smallest value (AIC = 1135.8). Figure 1 displays the survival,

density, event-probability, and hazard functions implied by this model.

6 Final remarks

This paper shows that modeling and estimation with the event-probability function is as

simple as it is with the hazard function. Unlike the hazard function, however, the event-

probability function can directly be interpreted as a risk function. Using the latter instead

of the former can help redress the acknowledged, ubiquitous misinterpretations that have

long afflicted applied research.

SUPPLEMENTARY MATERIAL

“Analysis.do” file: The Stata do-file that produces all the results presented in Section 5,

Tables 2 and 3, and Figure 1.
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Table 1: Event-probability g(t|θ) from equation (17), risk ratio, RR(t|θ) from equation (18),
and odds ratio, OR(t|θ) from equation (19), for different baseline average probabilities
g0(t|θ), corresponding baseline hazards h0(t|θ) from equation (11), and probability powers
(hazard ratios) equal to θ.

Probability Power (Hazard Ratio)
g0(t|θ) h0(t|θ) 0.1 0.5 0.8 1.0 1.3 2.0 3.0

0.001 0.001 g1(t|θ) 0.000 0.001 0.001 0.001 0.001 0.002 0.003
RR(t|θ) 0.100 0.500 0.800 1.000 1.300 1.999 2.997
OR(t|θ) 0.100 0.500 0.800 1.000 1.300 2.001 3.003

0.005 0.005 g1(t|θ) 0.001 0.003 0.004 0.005 0.006 0.010 0.015
RR(t|θ) 0.100 0.501 0.800 1.000 1.299 1.995 2.985
OR(t|θ) 0.100 0.499 0.800 1.000 1.301 2.005 3.015

0.010 0.010 g1(t|θ) 0.001 0.005 0.008 0.010 0.013 0.020 0.030
RR(t|θ) 0.100 0.501 0.801 1.000 1.298 1.990 2.970
OR(t|θ) 0.100 0.499 0.799 1.000 1.302 2.010 3.030

0.050 0.051 g1(t|θ) 0.005 0.025 0.040 0.050 0.065 0.098 0.143
RR(t|θ) 0.102 0.506 0.804 1.000 1.290 1.950 2.853
OR(t|θ) 0.098 0.494 0.796 1.000 1.310 2.053 3.161

0.100 0.105 g1(t|θ) 0.010 0.051 0.081 0.100 0.128 0.190 0.271
RR(t|θ) 0.105 0.513 0.808 1.000 1.280 1.900 2.710
OR(t|θ) 0.095 0.487 0.791 1.000 1.321 2.111 3.346

0.300 0.357 g1(t|θ) 0.035 0.163 0.248 0.300 0.371 0.510 0.657
RR(t|θ) 0.117 0.544 0.827 1.000 1.237 1.700 2.190
OR(t|θ) 0.085 0.456 0.770 1.000 1.376 2.429 4.469

0.500 0.693 g1(t|θ) 0.067 0.293 0.426 0.500 0.594 0.750 0.875
RR(t|θ) 0.134 0.586 0.851 1.000 1.188 1.500 1.750
OR(t|θ) 0.072 0.414 0.741 1.000 1.462 3.000 7.000

0.700 1.204 g1(t|θ) 0.113 0.452 0.618 0.700 0.791 0.910 0.973
RR(t|θ) 0.162 0.646 0.883 1.000 1.130 1.300 1.390
OR(t|θ) 0.055 0.354 0.694 1.000 1.621 4.333 15.444

0.900 2.303 g1(t|θ) 0.206 0.684 0.842 0.900 0.950 0.990 0.999
RR(t|θ) 0.229 0.760 0.935 1.000 1.055 1.100 1.110
OR(t|θ) 0.029 0.240 0.590 1.000 2.106 11.000 >100

0.950 2.996 g1(t|θ) 0.259 0.776 0.909 0.950 0.980 0.997 1.000
RR(t|θ) 0.272 0.817 0.957 1.000 1.031 1.050 1.052
OR(t|θ) 0.018 0.183 0.526 1.000 2.533 21.000 >100

0.990 4.605 g1(t|θ) 0.369 0.900 0.975 0.990 0.997 1.000 1.000
RR(t|θ) 0.373 0.909 0.985 1.000 1.008 1.010 1.010
OR(t|θ) 0.006 0.091 0.392 1.000 4.011 >100 >100

0.995 5.298 g1(t|θ) 0.411 0.929 0.986 0.995 0.999 1.000 1.000
RR(t|θ) 0.413 0.934 0.991 1.000 1.004 1.005 1.005
OR(t|θ) 0.004 0.066 0.343 1.000 4.921 >100 >100

0.999 6.908 g1(t|θ) 0.499 0.968 0.996 0.999 1.000 1.000 1.000
RR(t|θ) 0.499 0.969 0.997 1.000 1.001 1.001 1.001
OR(t|θ) 0.001 0.031 0.250 1.000 7.950 >100 >100
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Table 2: Point estimates and standard errors for the parameters of the four proportional-
odds models described in Section 5 with the data from the metastatic renal carcinoma trial.
The numbers in parenthesis after each model in the first line indicate the equation number
in the text.

Model (28) Model (29) Model (30) Model (31)
η̂0 0.584 0.461 2.902 2.600

(0.124) (0.131) (0.592) (0.814)
η̂1 -0.197 0.703 0.547

(0.0688) (0.223) (0.300)
η̂2 0.0531 0.0473

(0.0125) (0.0176)

θ̂1 -0.516 -0.469 -0.456 0.312
(0.168) (0.169) (0.171) (1.194)

θ̂2 0.388
(0.460)

θ̂3 0.0152
(0.0256)

log-likelihood -577.8 -573.6 -563.9 -563.3
AIC 1159.6 1153.2 1135.8 1138.6

Standard errors in parentheses. AIC: Akaike Information Criterion.
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Table 3: Point estimates and standard errors for the parameters of the four power-
probability models described in Section 5 with the data from the metastatic renal car-
cinoma trial. The numbers in parenthesis after each model in the first line indicate the
equation number in the text.

Model (32) Model (33) Model (35) Model (36)
η̂0 0.0267 -0.0467 1.565 1.319

(0.0774) (0.0832) (0.404) (0.526)
η̂1 -0.110 0.463 0.349

(0.0396) (0.155) (0.195)
η̂2 0.0358 0.0308

(0.00882) (0.0117)

θ̂1 -0.345 -0.319 -0.298 0.355
(0.112) (0.112) (0.112) (0.826)

θ̂2 0.305
(0.325)

θ̂3 0.0134
(0.0182)

log-likelihood -577.8 -574.1 -564.1 -563.5
AIC 1159.6 1154.2 1136.2 1139.0

Standard errors in parentheses. AIC: Akaike Information Criterion.
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Figure 1: Survival functions (panel A), density functions (B), event-probability functions
(C), and hazard functions (D), estimated with the model in equation (30) for each treatment
group in the metastatic renal carcinoma trial.

Appendix A

Proof of Corollary 1. First, we show that for all x > 0

1− exp(−x) < x (37)
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We define the function z(x) = 1− exp(−x)−x and its first derivative z′(x) = exp(−x)− 1.

Note that z(0) = 0 and z′(x) < 0 for all x > 0. The latter inequality holds because

e(−x) < 1 for all x > 0. Because the functions z(x) and z′(x) are continuous, by the mean

value theorem, z(x) < 0 for all x > 0, which implies inequality (37).

Second, we note that over the support T , the hazard function is continuous and strictly

positive, h(t) > 0. Replacing x with h(t) in inequality (37) yields 1 − exp(−h(t)) < h(t).

By equation (7), the latter inequality implies g(t) < h(t) over the support T .

Proof of Lemma 1. Under the condition stated in Lemma 1 and through equation (12)

and the definition of Riemann integrals as limits of Riemann sums, it follows that

S(t) = exp[−H(t)]

= exp

{∫ t

0

log[ḡ(u)]du

}
= exp

{
lim
k→∞

k∑
i=1

log[ḡ(ui)]δk

}

= lim
k→∞

exp

{
k∑
i=1

log[ḡ(ui)]δk

}

= lim
k→∞

exp

{
k∑
i=1

log
[
ḡ(ui)

δk
]}

= lim
k→∞

exp

{
log

[
k∏
i=1

ḡ(ui)
δk

]}

= lim
k→∞

k∏
i=1

ḡ(ui)
δk
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Proof of Lemma 2. The first expression follows by integrating by parts the function

h(u) = h1(u)h2(u), with h1(u) = 1 and h2(u) = − log[ḡ(u)]. The second expression follows

by integrating by substitution with v = ḡ(u) and u = ḡ−1(v) and then by parts.

H(t) =

∫ t

0

h(u)du (38)

=

∫ t

0

− log[ḡ(u)]du (39)

=

∫ ḡ(t)

ḡ(0)

− log(v)d ḡ−1(v) (40)

=

∫ ḡ(t)

ḡ(0)

ḡ−1(v)/v dv −
[
log(v)ḡ−1(v)

]∣∣ḡ(t)
ḡ(0)

(41)

The third expression follows by integrating by substitution first and then by parts. With

ḡ′ indicating the first derivative and ḡ−1 the inverse function,

H(t) =

∫ t

0

h(u)du (42)

=

∫ t

0

− log[ḡ(u)]du (43)

=

∫ ḡ(t)

ḡ(0)

− log(v)

ḡ′[ḡ−1(v)]
dv (44)
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