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ABSTRACT 
 

Artificial effect size magnification (ESM) may occur in underpowered studies, where effects are only 
reported because they or their associated p-value have passed some threshold. Ioannidis (2008) and 
Gelman and Carlin (2014) have suggested that the plausibility of findings for a specific study can be 
evaluated by computation of ESM, which requires statistical simulation. In this paper, we present a new 
Stata package called ‐emagnification‐ that allows straightforward implementation of such simulations 
in Stata. The commands automate these simulations for epidemiological studies and enable the user to 
assess ESM on a routine basis for published studies using user-selected study-specific inputs that are 
commonly-reported in published literature. The intention of the package is to allow a wider community to 
use ESMs as a tool for evaluating the reliability of reported effect sizes and to put an observed 
statistically significant effect size into a fuller context with respect to potential implications for study 
conclusions.   
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Note: Some material presented here was originally generated by two of the authors who served in 
various capacities on a European Food Safety Agency (EFSA) Panel on Plant Protection Products and their 
Residues (PPR) which, in turn, followed up on findings of the External Scientific report ‘Literature review 
on epidemiological studies linking exposure to pesticides and health effects’ (University of Ioannina 
Medical School, 2013) (EFSA-Q-2014-00481).  As part of their work on the PPR, the authors contributed 
to the review and writing of “Scientific Opinion of the PPR Panel on the follow-up of the findings of the 
External Scientific Report Literature review of epidemiological studies linking exposure to pesticides and 
health effects’ “and its Annex D where much of this material originally appeared.  The PPR Panel report 
is published in the EFSA Journal (EFSA PPR Panel Report, 2017), an official publication of EFSA. The 
present work introduces the new Stata command -emagnification- and is the result of an expansion 
and extension of the original EFSA PPR Panel work as part of a post-PPR Panel collaboration by the 
authors.  
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1. Introduction 

There is increasing interest and concern in the scientific community in recent years on the “replication 
crisis” in science.  Specifically, scientists are finding that the result from scientific experiments can be 
difficult to reliably replicate on subsequent investigations. Some have gone so far as to assert and provide 
support for a contention that most published research findings are false (Ioannidis, 2005). Others have 
pointed out that even the more modest goal of reproducing previous research – demonstrating that others 
can calculate using the same data and methods – is frequently difficult or impossible (ASA 2017).   

Several ideas have been advanced with respect to the reasons for this increased difficulty in replicating 
scientific results; these have included “vibrational effects”, which develop from the multitude of choices in 
the way the data are analyzed; increased pressures to publish; publication bias; and the prevalence of and 
emphasis in research on null-hypothesis-significance-testing.  Several researchers, directly or indirectly, 
have at least partially ascribed the current replication issues in science to a combination of an emphasis on 
testing of novel hypothesis, a lack of power in the studies that are done, and an over-emphasis on the part 
of researchers and publishers on p-values and “achieving (statistical) significance”.  This latter reason  
arises at least partly from the fact that underpowered studies for discovering statistically significant effect 
sizes of interest lead to artificially magnified effect size estimates associated with any effect that might be 
“discovered”, and has variously been termed effect size magnification, effect size inflation, truth inflation 
or, by Button et al., the “winners curse” (Button, 2013).  

We will here use the term effect size magnification (ESM) to describe the phenomenon that a reported 
association may be artificially inflated when the very reporting only occurred because the effect attained a 
certain size or was statistically significant. This phenomenon is more likely to occur in underpowered 
studies, where random variation may mistakenly be interpreted as an important scientific discovery. Studies 
are underpowered when they are small or have comparatively large random variation.     

As an example of this ESM concept and why it may come about, it is useful to imagine a thought experiment 
in which a trial is run thousands of times, each with variable sample sizes instead of what actually happens 
in practice, a one-time experiment or observation with one fixed sample size.  In this thought experiment, 
there will be a broad distribution of observed effect sizes over the thousands of times the trial is run with 
varying sample sizes. While the observed medians of these estimated effect sizes are expected to be close 
to the true effect size regardless of sample size, the trials from smaller size studies from these simulations 
will necessarily systematically produce a wider variation in observed effect sizes than the larger trials;  only 
a small proportion of the observed effects in these small size studies (i.e. low power) will pass any given 
statistical threshold of significance – and these will be only the ones with the greatest of effect sizes. Thus, 
when these low-powered (generally smaller) studies with greater random variation do indeed find a 
significance-triggered association as a result of passing a given statistical threshold (e.g., p<0.05), they 
are more likely to overestimate the size of that effect. What this means is that research findings of low-
powered and statistically significant studies are systematically biased in favor of finding (artificially) inflated 
effects. Stated mathematically: conditional on a result passing some pre-determined threshold of statistical 
significance, test level, or magnitude, the estimated effect size is a biased estimate of the true effect size 
with the magnitude of this bias inversely related to power of the study. 

For illustrative purposes and as an introduction to the issue, we draw on a concrete example from the work 
of John Ioannidis appearing in Table 2 of his article “Why Most Discovered Associations Are Inflated” 
(Ioannidis, 2008). His table is recreated here as Table 1. Ioannidis generated Table 1 from a series of 
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simulations designed to illustrate the ESM phenomenon in which a low study power will lead to exaggerated 
effect sizes for those results that are statistically significant.  

 
Table 1: Simulations for effect Sizes Passing the Threshold of Formal Statistical 
Significance (p = 0.05) (Excerpted from Table 2 of Ioannidis, 2008, with correctiona) 
True OR Control Group 

Rate (%) 
Sample n Per 

Group 
Observed OR in Significant Associations 
Median (IQRb) Median Fold Inflation

1.10 30 1000 1.23 (1.20 – 1.29) 1.11 
1.10 30 250 1.51 (1.49 – 1.55) 1.37 
1.25 30 1000 1.29 (1.26 – 1.67) 1.03 
1.25 30 250 1.60 (1.50 – 1.67) 1.28 
1.25 30 50 2.73 (2.60 – 3.16) 2.18 
a See explanatory note at footnote 2 in text 
b IQR indicates interquartile range. 

 

As can be seen in the first data row of Table 1, Ioannidis begins by assuming a true odds ratio for an 
association of 1.10 and that the proportion of exposed individuals in the control (or non-diseased) group is 
30%. It follows then, mathematically, that the expected proportion of exposed individuals in the case group 
would be 0.3204.1  Ioannidis then simulates a set of epidemiological studies in which (i) the control group 
in each simulated study includes 1000 subjects and the number of exposed subjects within the control 
group is randomly drawn from a binomial distribution with probability 0.3000 representing the control group 
proportion; and (ii) the case group in each simulated study includes 1000 subjects and the number of 
exposed subjects within the case group is randomly drawn from a binomial distribution with probability of 
0.3204, representing the case group proportion. The observed odds ratio of each of many simulated studies 
in which “n” samples are drawn per group is then computed and stored. The median odds ratio of these 
simulated studies is expected to be equal to the true odds ratio value of 1.10, but we would expect that 
only a proportion of those observed odds ratios that happened to have large values would be statistically 
significant (p < 0.05). This is what is illustrated in Table 1, focusing on and highlighting the simulation 
results of the odds ratios that happened to be found significant at p<0.05. When looking at only those odds 
ratios that pass this p<0.05 statistical threshold, the medians among this subset of (statistically significant) 
odds ratios is observed to be 1.23, shown in the first row of data in Table 1 which is higher than the true 
odds ratio of 1.1 used to generate the simulation. In fact, Table 1 shows that a considerable fraction 
(>75%) of the simulated significant odds ratios are inflated compared to the true odds ratio of 1.10 since 
the interquartile range (IQR) of the medians were found in Ioannidis’s simulations  to be (1.20-1.29).2 This 
phenomenon illustrates (via computer simulation) that when a researcher’s or data user’s focus is on 
statistically significant results, such statistically significant results will be systematically biased high 
(magnified or inflated) for underpowered studies: in this example in which the  power can be calculated to 
be 27% (not shown) and where the actual or true odds ratio is 1.10, the median statistically significant 
odds ratio is estimated as 1.23,  representing a systematic inflation of 11%, this. As the sample size gets 
smaller (say, from 1000 in each of the comparison groups to 250 as shown in the second line of data in 
Table 1), the magnification becomes greater, with a median odds ratio of 1.51 (IQR: 1.49-1.55) 
corresponding to a median inflation of 37%. As shown in the last row of Table 1, Ioannidis uses a still 
smaller sample size of 50 and increases the true odds ratio from 1.10 to 1.25 (producing only 15% power):  
                                                 
1 P1 = (P0 x OR) / [( 1 – P0 ) + ( P0 x OR )] where: P1 = Expected proportion of exposed individuals among cases; P0 = Expected 
background or control group proportion; and OR = True odds ratio between exposed and control individuals 
2 Simulation with -emagnification- done by the authors suggests the 1.23 listed as p25 in Table 2 of Ioannidis (2008) is a 
typographical error, and the actual value for the p25 should be closer to 1.20.   
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in doing this, he produces a median odds ratio for statistically significant results of 2.73 representing a 
magnification factor of 2.18 -- more than double (118% inflation) the true odds ratio of 1.25 for those 
results that pass the p<0.05 significance threshold!  

While Table 1 above is useful to illustrate the ESM phenomenon, demonstrate how it arises, and quantify 
it, the tabulated conditions and numbers in Table 1 are necessarily fixed and it would be useful to be able 
to generate such a table “on the fly” with inputs that are specific to a researcher’s particular study of 
interest.  This Stata Journal article introduces new Stata commands -emagnification proportion- 
and -emagnification rate- (hereinafter referred to generically as -emagnification-) to easily 
implement and examine the above described ESM phenomenon using simulations. Stata’s -

emagnification- command automates these simulations and enables the user without too much effort 
to compute the magnification factors numerically on a routine basis in specific settings or for specific 
studies. It is an outgrowth of work done by two of the authors as part of a European Food Safety Agency 
(EFSA) Panel on Plant Protection Products and their Residues (PPR) and is the result of an expansion and 
extension of the original EFSA PPR Panel work during post-PPR Panel collaboration by the authors.3   

The remainder of this paper introduces this new Stata command, which facilitates performing ESM 
simulations. The general idea is that if researchers are interested in effect size estimates only if they cross 
some boundary of significance or magnitude, then the reported estimates are biased away from the null if 
they derive from low powered studies. The magnitude of bias can be expressed as the median of reported 
estimates (estimates exceeding a selected boundary such as p<0.05) relative to the true value, and the 
new Stata package implements simulations to quantify this for odds ratios and rate (or risk) ratios.  In 
addition to the median of reported estimates, other percentiles (e.g.,  25th and 75th , or 10th and 90th) can 
considered. Such Stata simulations can be useful when evaluating reported effect sizes in a published 
epidemiological paper and the new package makes this a simple numerical exercise.  

2. The emagnification Command 

2.1 Syntax 

Effect Magnification for Proportions 
 
emagnification proportion, p0(numlist) or(numlist) n0(numlist) n1(numlist) 

[other_options] 
 
Effect Magnification for Rates 
 
emagnification rate, r0(numlist) rr(numlist) n0(numlist) n1(numlist) 

[other_options] 
 
The words ‘proportion’ and ‘rate’ after ‘emagnification’ can be abbreviated to any number of characters. 
For example, all the following three lines are allowed: 

                                                 
3 As part of their work on the PPR, two of the authors (MB and DJM) contributed to the review and writing of “Scientific Opinion of 
the PPR Panel on the follow-up of the findings of the External Scientific Report ‘Literature review of epidemiological studies linking 
exposure to pesticides and health effects’ “ (EFSA, 2017) and its Annex D where much of this material originally appeared. The 
effect size magnification calculations/simulations appearing in Annex D of that EFSA report were generated using custom-coded SAS 
program by one of authors (JTN) of this Stata Journal article. The results for the current Stata -emagnification- command 
introduced here were tested against this earlier SAS script and compared favorably.       
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. emagnification proportion, p0(.5) or(2) n0(100) n1(100) 
 
. emagnification prop, p0(.5) or(2) n0(100) n1(100) 
 
. emagnification p, p0(.5) or(2) n0(100) n1(100) 

 

2.2 Description 

The -emagnification- command estimates effect magnification of proportions and rates through 
simulations.  
 
The ‘emagnification proportion’ syntax estimates odds ratios with the ‘logit’ command.  
 
The ‘emagnification rate’ syntax estimates relative risks with the ‘poisson’ command.  
 
Iterations that do not converge (for example zero events are generated which may happen with small 
counts) are dropped, with the number of valid (completed) iterations shown at the end of the Stata run in 
the results table in the column labeled ‘valid’. If all iterations are completed with valid results and no runs 
are dropped, this will equal the number of iterations requested by the user. The program will continue 
running even with invalid (and dropped) results.     
 

2.3 Options 

p0(numlist) specifies the proportions in the reference group when used with the -emagnification 
proportion- syntax.  This is sometimes estimated in case-control studies using odds ratios as the 
number of exposed subjects in the reference (control) group divided by the number of subjects in the 
reference group  

 
or(numlist) specifies the odds ratios of the case (comparison) group versus the reference group 
 
r0(numlist) specifies the rates in the reference group when used with the -emagnification 

rate- syntax.  This is sometimes estimated in cohort studies using rate ratios (or relative risks) as 
the number of diseased individuals in the reference (unexposed) group divided by the number of 
subjects in the reference group.  

 
rr(numlist) specifies the risk ratios of the exposure (comparison) group versus the reference group 
 

n0(numlist) specifies the sample size in the reference group 
 
n1(numlist) specifies the sample size in the comparison group 
 

pctile(numlist) specifies the percentiles of the distribution of significant effects sizes specified in 
numlist where what is significant is defined in the level( ) option;  defaults to 10 50 90.  
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ifactor(numlist) specifies the inflation factors of the percentiles specified in numlist where the 
inflation (exaggeration) factor is equal to the relevant percentile divided by the true odd ratio.    The 
set of percentiles specified in the ‘ifactor’ option may be different from that specified in the ‘pctile’ 
option. For example, both the following two lines are allowed: 

 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) pctile(50) 

ifactor(50) 
 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) pctile(50) 

ifactor(90) 
 

nsim(#) specifies the number of simulated datasets; defaults to 10. 
 

level(#) specifies the significance level of the test; defaults to 0.05.  
 

onesided specifies a one-sided test; defaults to two-sided.   
 
exact for proportion specifies the specifies the Fisher's exact test instead of the default chi-square test; 

for rates, specifies the exact Poisson regression instead of the default Poisson regression. 
 
seed(string)specifies the seed for the pseudo-random number generator. The ‘emagnification’ 

command is based on simulated pseudorandom data. Therefore, the same command line can 
produce non-identical results, when run multiple times. If the ‘seed’ option is specified, the sequence 
of pseudorandom number generator starts at the specified seed, and the same command line 
produces identical results every time it is run. For example, the following two lines may not produce 
identical estimates: 

 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) 
 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) 

 
Conversely, the following two lines produce identical estimates: 

 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) seed(123) 
 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) seed(123) 

 
The pseudorandom-number generator seed is saved in the `r(seed)’ macro, whether or not the ‘seed’ 
option is specified in the ‘emagnification’ command. The ‘r(seed)’-saved macro can be used to 
replicate the results of the latest simulation. For example, the following two lines, run consecutively, 
produce identical estimates: 

 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) 
 
. emagnification proportion, p0(.5) or(2) n0(100) n1(100) seed(`=r(seed)') 

 
log shows the simulation iterations. This is convenient to track Stata’s progress on long runs with many 
iterations. 
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clean shows the results without separator lines. 
 

2.4 Stored Results 

emagnification stores the following in r(): 
 
    Scalars 
      r(level)   the level of the tests 
 

    Macros 
     r(cmdline) command as typed 
     r(seed)    the seed used by the pseudo-random numbers generator 
 

    Matrices 
     r(table)   the table of the results 
 

2.5 Example Inputs 

The following examples illustrate the -emagnification- command 
 
Estimate the effect magnification for a proportion 
 

. emagnification proportion, p0(.5) or(2) n0(100) n1(100) 
 
Estimate the effect magnification for a rate 
 

. emagnification rate, r0(.5) rr(2) n0(100) n1(100) 
 
Estimate the effect magnification for a proportion in multiple scenarios using 0.1 as the level 
of significance and showing the inflation factor for only the median statistically significant 
result 
 

. emagnification proportion, p0(.5 .9) or(1.5 2) n0(100 200) n1(100 200) 

.pctile(50 90) ifactor(50) nsim(100) level(.1) onesided seed(123) log 
clean 

 
Show the saved results of the latest estimation: 
 

. return list 

. matrix list r(table) 

3. Applications 

This section provides further details of the Ioannidis example described earlier in the Introduction and 
shows how to conduct this analysis with the new Stata command.  It then goes on to present two 
examples using data taken from the epidemiological literature.  The first epidemiological case example in 
this section is from a case control study using odds ratios published by Greenland et al. (1994) and 
dealing with resin exposures and lung cancer in a group of workers involved in the assembly of 
transformers. The second epidemiological case example uses rate ratios (aka relative risks) and 
introduces a publication from the U.S. Agricultural Health Study, a cohort study begun in the mid-1990’s 
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which follows 90,000 pesticide applicators and their wives living in IA and NC which investigates diazinon 
exposure among applicators of this pesticide and lung cancer.  The -emagnification- command is 
able to deal with both odds ratios (generally from case-control studies for which -emagnification 
proportion- is used) and rate (or risk) ratios (generally from cohort studies for which -
emagnification rate- is used) and the two epidemiological examples illustrate each of these, 
respectively.  

3.1 Ioannidis Effect Size Magnification Example Simulation 

Before beginning with the two epidemiological examples in order to illustrate the utility of the -
emagnification- command with case studies, it is useful to revisit the Ioannidis example illustrated in 
Table 1 and to use -emagnification- to replicate the simulation results the table.  To do this, the 
following four input values are required: 
 

1. the number of subjects in reference group; 
2. the number of subjects in the comparison group; 
3. the specific proportion or rate of interest in the reference group. Here, this is the proportion of 

exposed subjects in the control group since the Ioannidis example uses odds ratios; and 
4. the assumed (true) odds ratios (here) or rate ratios of interest. 

 
In the -emagnification proportion- syntax for odds ratios, we have the following inputs (all 
derived from Table 1): 
 

 n0(numlist) is the number of subjects in reference group, here 1000 control subjects as per 
the “Sample n Per Group” column from Table 1; 

 n1(numlist) is the number of subjects in comparison group, here 1000 case subjects as per 
the “Sample n Per Group” column from Table 1; 

 p0(numlist) is the proportion of interest in the reference group; here in the Ioannidis 
example, this is the proportion of exposed subjects in the control group = 0.30 as listed under 
the “Control Group Rate (%)” column of Table 1; 

 or(numlist) is the assumed true odds ratio(s), here 1.10 or 1.25, as per the “True OR” 
column in Table 1. 
 

We insert these values into the -emagnification proportion- command with several additional 
options described in Part 3 to simulate the results from the first row of the Table 1 from Ioannidis: 

emagnification proportion, p0(0.30) or(1.1) n0(1000) n1(1000) pctile(25 50 75) 
ifactor(50) nsim(1000) level(0.05) onesided seed(123) 

This generates the following Stata output table: 

 
 
                                                                                            
    .3   .3203883       1.1   1000   1000    1000    .274   1.202   1.235   1.289    1.123  
                                                                                            
    p0         p1   true_or     n0     n1   valid   power     p25     p50     p75   if_p50  
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As can be seen, the values for the p50 (i.e., median) of 1.235 and IQR of (1.202-1.289) approximate well 
those given in the simulation performed by Ioannidis in the first row of Table 1. 
 
Using similar syntax except taking advantage of the ability of the -emagnification- command to use 
Stata numlists, we can replicate both the second and fourth rows of Table 1 with the following single 
Stata command, adding the log option to monitor Stata’s progress in real time: 
 

emagnification proportion, p0(0.30) or(1.10 1.25) n0(250) n1(250) 
pctile(25 50 75) ifactor(50) nsim(1000) level(0.05) onesided seed(123) 
log 

 
This generates the following output since the log option was used: 
 
Scenario 1: p0 = .3, or = 1.1, n0 = 250, n1 = 250 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Scenario 2: p0 = .3, or = 1.25, n0 = 250, n1 = 250 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 

The tests are one-sided with level = .05 
 

 
Similarly, the values estimated here by Stata (medians of 1.481 and 1.519 and respective IQRs of (1.423-
1.563) and (1.440-1.623) approximate reasonably well those provided by Ioannidis and appearing in Table 
1. The remaining two simulations from Ioannidis (corresponding to the third and fifth rows in Table 1) can 
be recreated using the following two Stata commands: 
 

emagnification proportion, p0(0.30) or(1.25) n0(1000) n1(1000) pctile(25 
50 75) ifactor(50) nsim(1000) level(0.05) onesided seed(123) log  
 
emagnification proportion, p0(0.30) or(1.25) n0(50) n1(50) pctile(25 50 
75) ifactor(50) nsim(1000) level(0.05) onesided seed(123) log 

 
[results not shown]  
 
Similarly, these latter two Stata commands re-produce the simulation values generated by Ioannidis.  
Importantly, these illustrate – as he did – that the more underpowered (and generally smaller) a study is 
and the smaller the true effect size that the study is investigating, the greater the degree that observed 
effect sizes that pass some pre-established statistical threshold or are by other means “discovered” will be 
inflated. Here, we see the median inflations vary from 18% with a small true odds ratio and a large sample 
to a near doubling of the true odds ratio a smaller sample size of only 50, even with a more substantive 
odds ratio of 1.25.  
 

                                                                                          
    .3   .3488372      1.25   250   250    1000    .298   1.440   1.519   1.623    1.215  
    .3   .3203883       1.1   250   250    1000    .114   1.423   1.481   1.563    1.346  
                                                                                          
    p0         p1   true_or    n0    n1   valid   power     p25     p50     p75   if_p50  
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The following two sections illustrate the use of the -emagnification- command with two 
epidemiological studies which appeared in the literature and are more typical of the situations that users 
of this command may encounter. 

3.2 Odds Ratios:  Greenland et al. (1994) Resin Worker Example 

While the above example shows the -emagnification- command duplicating the Ioannidis table, these 
would not be typical uses of the command for the researcher who is faced with evaluating potential ESM 
in (already) published studies. The first epidemiological case example in this section is from a study 
published by Greenland et al. (1994). Greenland studied the exposure rates among lung cancer deaths and 
controls from occupational exposure to resins in a facility that assembled transformers. It is used to 
illustrate the -emagnification proportion- command and is relevant to case-control studies using 
odds ratios. The example here -- for ease of exposition -- focuses on the crude (as opposed to adjusted) 
estimates provided in that publication.4  There are 45 exposed cases, 94 unexposed cases, 257 exposed 
controls, and 945 unexposed controls.  
 
First, using Stata’s -cci- command to estimate totals and odds ratios, we see from the Stata output below 
that there is a statistically-significant positive association between exposure to resins and lung-cancer 
deaths (OR = 1.76; 95% CI: (1.20, 2.58)). 
 

. cci 45 94 257 945, woolf 
 
                                                         Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |        45          94  |        139       0.3237 
        Controls |       257         945  |       1202       0.2138 
-----------------+------------------------+------------------------ 
           Total |       302        1039  |       1341       0.2252 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         1.760286       |    1.202457    2.576898 (Woolf) 
 Attr. frac. ex. |         .4319106       |    .1683693    .6119365 (Woolf) 
 Attr. frac. pop |         .1398272       | 
                 +------------------------------------------------- 
                               chi2(1) =     8.63  Pr>chi2 = 0.0033 
 
Before using the Stata -emagnification- command, it us useful to first use the graphing capabilities 
of Stata’s built-in  -power twoproportions- command along with the relevant estimated values 
provided in the above 2x2 table to estimate the power to detect various (assumed) true odds ratios that 
might be of interest (here, 1.2, 1.5, 2.0, and 3.0) at 0.5x the exposed proportion in control group, 1x the 
exposed proportion in control group, and 2x the exposed proportion in control group. Supplementing the 
user-written -emagnification- command with Stata’s built-in -power twoproportions- command 
provides the user a broader and important view of power-related issues and can assist when evaluating a 
specific epidemiological study and the degree to which the power of that study might be sensitive to the 
assumed reference proportion (here for the odds ratio, the exposed proportion in the control group).  Power 
is dependent in part on the true effect size as well as this reference proportion and selecting several 

                                                 
4 The data is also provided in Rothman et al.’s Modern Epidemiology. See Table 19-1 (p. 349) in the third edition. 
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reference proportions in the command can be used as a sensitivity analysis. This sensitivity of the power 
to the proportion exposed in the control group is shown in Figure 1 and was generated using the following 
Stata command:5 
 

. power twoproportions (`=0.5* 257/1202'(0.001) `=2 * 257/1202'), 
test(chi2) oratio(1.2 1.5 2.0 3.0) n1(1202) n2(139)graph(recast(line) 
xline(`=0.5* 257/1202' `= 257/1202' 
`=2*257/1202',lpattern(dash))legend(rows(1)size(small) position(6)) 
ylabel(0.2(0.2)1.0) xtitle("Proportion Exposed in Control Group 
(p1)")scheme(s1manual)) onesided 

 
Figure 1. Graph showing estimated power for a (one-sided) two-sample proportions test evaluating power as a 
function of exposed proportion in control-group at true odds ratios of 1.2, 1.5, 2.0, and 3.0. 

 
Note: Dashed vertical lines represent control group proportions at 0.5x of the observed exposed proportion in control group, 1x of 
that observed exposed proportion in control group, (i.e., 257/1202), and 2x that of the observed exposed proportion in control 
group and are used to illustrate the sensitivity of the estimated power to these exposed proportions in control group. 
 
 
In the above command, the reference group count (here, controls) is 1202, the comparison group count 
(here, cases) is 139, and the observed exposure proportion among the control reference group (“Proportion 
Exposed in Control Group (p1)”) is 257/1202, or 0.2138, all of which are taken from the Stata -cci- output 
shown above.  The center vertical dashed line in Figure 1 represents this proportion.  At this (baseline) 
proportion, the power to detect a true odds ratio of 1.2 is about 25%, the power to detect a true odds ratio 
of 1.5 is about 65%, and the power to detect true odds ratios of 2.0 and 3.0 are 96% and ca. 100%, 
respectively. The power to detect these odds ratios would differ at half the baseline proportion (leftmost 
vertical dashed line) and double the baseline proportion (rightmost vertical dashed line) and can also be 
read from the graph if such a sensitivity analysis was desired.  Figure 1 suggests low power of this study 

                                                 
5 The Stata command power twoproportions (`=0.5* 257/1202' `=257/1202' `=2 * 257/1202'), test(chi2) oratio(1.2 1.5 2.0 3.0) 
n1(1202) n2(139)onesided  can be used to directly calculate power in a tabulated format without the graph. These results agree 
with those produced for the -emagnification- output. 
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to detect true odds ratios as low as 1.2 or 1.5 (25% power and 65% power, respectively) and, thus, that 
the study might be subject to ESM if the true odds ratios were of this size.  
 
The -emagnification- command introduced here allows us to take the above -power 

twoproportions- analysis one step further and to quantitatively estimate the ESM that might be present; 
such an analysis will permit the user to evaluate whether the observed statistically significant “discovered” 
odds ratio of 1.76 is potentially consistent with a true odds ratio of 1.2 given the power/sample size of the 
study. As described earlier in Part 2, the -emagnification- command does this by repeatedly drawing 
values for the 2x2 epidemiological table that are consistent with (i) the given row marginals (here, total 
number of cases and total number of controls); (ii) any assumed (or various assumed if numlist is used) 
true odds ratios; and (iii) binomial draws from the population of cases and controls with a given control 
group proportion (here 257/1202). The output includes various user-selected quantiles of the distribution 
of the odds ratio determined by the simulation to have crossed a user-selected statistical threshold 
(indicated by level()) and (optionally) the degree of inflation which these odds ratios represent. 
 
Using the -emagnification- command for the Greenland (1994) data, we have6: 
 

emagnification proportion, p0(`=257/1202') or(1.2 1.5 2.0 3.0) n0(1202) 
n1(139) pctile(10 50 90) ifactor(50) nsim(1000) level(0.05) onesided 
seed(123) log 

 
Since the log option is selected here to show real-time Stata progress, Stata generates the following output: 
  
Scenario 1: p0 = .21381032, or = 1.2, n0 = 1202, n1 = 139 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Scenario 2: p0 = .21381032, or = 1.5, n0 = 1202, n1 = 139 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Scenario 3: p0 = .21381032, or = 2, n0 = 1202, n1 = 139 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Scenario 4: p0 = .21381032, or = 3, n0 = 1202, n1 = 139 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 
The tests are one-sided with level = .05 
 

As can be seen, if the true odds ratio for the lung cancer-resin relationship were 1.2 and the non-diseased 
reference group had a true rate of lung cancer p0 equal to the observed rate of 0.21381 (=257/1202) from 
the study, we would expect the observed median of statistically significant odds ratios passing a p<0.05 

                                                 
6 The command here generates effect magnifications tables for only one p0 value. If a sensitivity analysis around p0 is desired at 
0.5x, 1x, and 2x the control proportion rate, the numlist option for p0 can be used to generate this larger set of scenarios: 
emagnification proportion, p0(`=0.5* 257/1202' `=257/1202' `=2* 257/1202') or(1.2 1.5 2.0 3.0) 
n0(1202) n1(139) pctile(10 50 90) ifactor(50) nsim(1000) level(0.05) onesided seed(123) log  

 

                                                                                                 
    .2138103   .4493007         3   1202   139    1000       1   2.349   2.989   3.780    0.996  
    .2138103   .3522961         2   1202   139    1000    .967   1.599   1.999   2.549    0.999  
    .2138103   .2897407       1.5   1202   139    1000    .653   1.453   1.647   2.012    1.098  
    .2138103   .2460507       1.2   1202   139    1000    .243   1.422   1.531   1.786    1.276  
                                                                                                 
          p0         p1   true_or     n0    n1   valid   power     p10     p50     p90   if_p50  
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threshold to be 1.53; this represents a median inflation of 28% (represented by if_p50 in the above table) 
over the true odds ratio of 1.2 used in the simulation; by definition, half of the expected observed 
statistically significant odds ratios would be above this median value of 1.53 and half would be below. From 
the output above, we can also see that if the true odds ratios were alternatively 1.5, 2.0, or 3.0, half of the 
observed statistically significant odds ratios would exceed 1.65, 2.00, and 3.00, respectively, reflecting 
inflation rates of 10%, 0%, and 0%. Note that the estimated inflation amounts of 0% and 0% in the above 
output correspond to powers of 97% (to detect a true odds ratio of 2.0) and essentially 100% (to detect a 
true odds ratio of 3.0), while the (substantially larger) respective inflation factors of 28% and 10% for odds 
ratios of 1.2 and 1.5 correspond to lower powers of 24% (for the odds ratio of 1.2) and 65% (for the odds 
ratio of 1.5). This is as expected: all else being equal, statistically significant effect sizes arising from low 
powered studies attempting to detect a small true effect size show larger magnifications due to ESM than 
higher powered studies attempting to detect larger true effect sizes.  The analysis presented in the table 
parallels that done by Ioannidis (2008) which was described earlier.   
 
With respect to the study-observed resin worker odds ratio of 1.76 (95% CI: 1.20, 2.58) we saw generated 
by cci 45 94 257 945, woolf, the above Stata output suggests that if the true odds ratio in the 
transformer resin study were 1.2 and the study were to be repeated many times, we would expect to find 
most of the statistically significant results (the middle 80% of the distribution, in this case, since we used 
pctile(10 50 90)) to vary between 1.422 (p10) and 1.786 p(90), with a median odds ratio of 1.53 
(p50). It follows from this that -- given the size of the study and other characteristic factors -- an odds ratio 
of 1.76 is (just) within the (middle 80%) bounds that would be expected to occur after considering effect 
size magnification if the true odds ratio was 1.2 and the observed odds ratio of 1.76 was “selected” for 
attention because it was significant. Thus, the observed odds ratio of 1.76 is reasonably consistent or 
compatible with a true odds ratio of as low as 1.2 if we define reasonable consistency as being within the 
middle 80% of the distribution (i.e., the p10 to p90 range illustrated above) that would be expected for 
the set of “discovered” statistically significant results. Said another way: if it were determined that an odds 
ratio of as low as 1.2 were of substantive interest, the power of this study was inadequate to distinguish 
the observed “discovered” odds ratio of 1.76 from a true odds ratio of 1.2:  
 
Note as an illustrative hypothetical that had the sample size for this study been 10 times greater (and each 
cell in the 2 x 2 table been thus increased proportionately 10-fold), the (still) observed odds ratio of 1.76 
would then be found to be incompatible with a true odds ratio of 1.2 or 1.5 (whose p90 values for 
statistically significant effects are 1.31 and 1.62, respectively) as shown below: 
 

emagnification proportion, p0(`=2570/12020’ ) or(1.2 1.5 2.0 3.0) 
n0(12020) n1(1390) pctile(10 50 90) nsim(1000) level(0.05) onesided 
seed(123) log 

 
One would conclude from this latter (10 times larger) example that if the true odds ratio were 1.2, effect 
size magnification would not account for an odds ratio as high as the observed 1.76; this contrasts (due 

                                                                                          
    .2138103   .4493007         3   12020   1390    1000       1   2.792   3.004   3.241  
    .2138103   .3522961         2   12020   1390    1000       1   1.851   1.995   2.152  
    .2138103   .2897407       1.5   12020   1390    1000       1   1.380   1.495   1.623  
    .2138103   .2460507       1.2   12020   1390    1000    .849   1.140   1.210   1.311  
                                                                                          
          p0         p1   true_or      n0     n1   valid   power     p10     p50     p90  
                                                                                          



  
KI Working Paper (August 2019) 

 
 

17 

to its ten times larger sample size) with the conclusion reached for the earlier (and actual) “ten times 
smaller study” Greenland et al. (1994) resin study described above. Said differently: if it were determined 
that an odds ratio of as low as 1.2 were of substantive interest, the power of this larger (hypothetical) 
study would have been sufficient to conclude that the observed odds ratio of 1.76 would not likely be a 
result of ESM. Such a change in characterization of the observed odds ratio is not unexpected: increasing 
the sample size (here, 10-fold) will increase the power to detect a given effect size and this in turn will 
result in a smaller degree of ESM as demonstrated by Ioannidis’s simulation exercises. Of course, this could 
likely have been determined based on the power of 85% to detect an odds ratio of 1.2 as shown in the 
above table which exceeds the 80% value for power that typically results in no or minimal ESM. The -
emagnification- command, however, allows one to better characterize and quantitate potential ESM 
by showing a range of statistically significant odds ratios that are compatible with the one that was observed 
(or “discovered”) in the study.   

3.3 Rate Ratios: Agricultural Health Study Example 

In the final case example, we consider ESM and rate ratios (or, equivalently, relative risks) as opposed to 
odds ratios as in the previous resin worker study.  Specifically, we look at a case study of lung cancer and 
its putative association with diazinon exposure in pesticide applicators from the U.S. Agricultural Health 
Study (Jones et al., 2015). Here, a statistically significant rate ratio of 1.60 (95% CI: 1.11 to 2.31) with 
respect to lifetime days of use was reported by the study authors when comparing the top tertile of 
exposure to the no exposure reference category. The study authors concluded that this provided additional 
evidence of an association [of diazinon] with lung cancer risk. The number of subjects at each exposure 
level was provided in the publication (non-exposed group: N = 17710, and T(ertile)1, T2, and T3 were 
categorized based on the exposure distribution), and we obtain the required information from the 
publication to perform an ESM calculation;  specifically:  (i) the number of subjects in the reference non-
exposed group = 17710; (ii) the number of subjects in each of the exposed groups (tertiles) = 17107; and 
(iii) the number of diseased individuals (lung cancer) in the reference non-exposed group = 199 (from 
Table 3 of the cited publication).  
 
As with the Greenland et al. (1994) publication, we are interested prior to conducting an ESM calculation 
in evaluating the power of the study associated with the estimated background rate of 199/17710 
(=0.011237) for detecting exemplar rate ratios of 1.2, 1.5, 2.0, and 3.0 among the subjects in each tertile 
of the diazinon exposed individuals. As a form of sensitivity analysis similar to that done in the Greenland 
et al. example, we are also interested in doing this power calculation assuming the true rate is one half of 
this background rate (or 0.005617), and twice this background rate (0.022473). As before, this analysis 
was performed using Stata’s -power twoproportions- command and is shown below in Figure 2 for 
true rate ratios of 1.2, 1.5, 2.0, and 3.0 for 0.5x-, 1x- and 2x- the (observed) background rate of 199 
diseased individuals/17,710 persons: 
 

power twoproportions (`=0.5* 199/17710'(0.0001) `=2 * 199/17710'), 
test(chi2) rrisk(1.2 1.5 2.0 3.0) n1(17710) n2(1710)graph(recast(line) 
xline(`=0.5* 199/17710' `=199/17710' `=2 * 199/17710',lpattern(dash)) 
legend(rows(1)size(small) position(6)) 

                                                 
7 Specifically: N of each tertile= (2350+2770)/3=1710 from the publication’s Table 1 where: the value 2350 represents the number 
in the lowest exposed level and the value of 2770 represents the number of the two highest exposed levels when the exposed 
subjects were dichotomously categorized. 
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ylabel(0.2(0.2)1.0)xtitle("Proportion Diseased in Unexposed Group 
(p1)") scheme (s1manual)) onesided 

 
 
 

Figure 2. Graph showing estimated power for a (one-sided) two-sample proportions test evaluating power as a 
function of unexposed-group proportion at true rate ratios of 1.2, 1.5, 2.0, and 3.0. 

 
Note: Dashed vertical lines represent control group proportions at 1x of that observed (here, 199/17710) as well as 1/2x of that 
observed and 2x of that observed and are used to illustrate the sensitivity of the power to these background rate assumptions. 
 
 
As can be seen in Figure 2, this study had a power of about 23% at 1x the background rate (i.e., the 
unexposed group proportion, equal to 199 diseased individuals/17,710 subjects = 0.011237) to detect a 
rate ratio of 1.2. To detect a rate ratio of 1.5, there is about 64% power. Power is greater than 80% to 
detect rate ratios of 2.0 and 3.0 at a true rate ratio of 1.2.  Sensitivity analyses show that at 0.5x the 
observed background rate, the power would be about 14% and 48% to detect rate ratios of 1.2 and 1.5, 
respectively, and greater than 80% to detect rate ratios of 2.0 and 3.0. Alternatively if the true background 
rate was actually twice the observed background rate, we would have about 86% power to be able to 
detect a rate ratio of 1.5 and essentially 100% power to detect a rate ratio of 2.0.  
 
Given the above and the fact that this is an analysis looking at a rate ratio, -emagnification rate- 
was used to estimate the ESM given (assumed) true rate ratios of 1.2, 1.5, 2.0, and 3.0. Here, we also 
request Stata to perform these analysis at the observed background rate of 199/17710, but also at 0.5x 
and 2x the observed proportion of disease among the unexposed: 
 

emagnification rate, r0(`=0.5*199/17710' `=199/17710' `=2*199/17710') 
rr(1.2 1.5 2 3) n0(17710) n1(1710) pctile(10 50 90) ifactor(50) nsim(1000) 
level(.05) seed(123) onesided  
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As before, the analysis presented in the above table parallels that done by Ioannidis (2008) to illustrate the 
ESM concept, except that this uses various (assumed) rate ratios rather than the odds ratios used by 
Ioannidis in his example and thus uses the -emagnification rate- version of the Stata command. 
From the Stata output above, for example, when r0 = 0.0112366 (= 199/17710), a true rate ratio of 1.2 
would result in instead – were the study to be repeated numerous times – statistically significant rate ratios 
that would vary from 1.42 (at the 10th percentile) to 1.79 (at the 90th percentile). The median expected 
value of the rate ratio is equal to 1.52, higher by 26% than the true rate ratio of 1.2 used in the simulation, 
as shown in the above output under if_p50; as before, half of the expected statistically significant rate 
ratios would be above this median of 1.52 and half would be below. 

With respect to the rate ratio of 1.6 (95% CI: 1.11, 2.31) that was observed in the Jones et al. (2015) 
study, the above table suggests that such a rate ratio is not inconsistent with a true rate ratio of 1.2 
because the p90 for “discovered” statistically significant results when the true rate ratio is 1.2 is 1.79. Said 
another way: if it were determined that a rate ratio of 1.2 were of substantive interest and the observed 
rate ratio of 1.60 were selected for review on account of its passing a p<0.05 threshold and achieving 
statistical significance, the Jones et al. (2015) study power was not sufficient to distinguish the observed 
rate ratio of 1.60 from a true rate ratio of 1.2.  

4. Discussion 

The above examples have demonstrated that ESM has the potential to be considerable when the power of 
a study is low. From a practical perspective, these simulation results demonstrate that ESM should be of 
interest to those evaluating statistically significant results from low powered studies and that any large 
effect sizes observed from such studies should be interpreted cautiously. 

One question the reader may ask is how these estimated e-magnification intervals differ from or relate to 
the typical confidence intervals around point estimates that populate much of the literature. In addition, 
the reader may ask what advantages there are to considering both the (classic) 95% confidence interval 
around the effect size and any estimated effect magnification interval as derived through -
emagnification-.  Further, the reader may wonder about extent to which the (classic) confidence 
interval and the effect size magnification interval are expected to be similar and how these two intervals 
should best be interpreted by the practitioner with respect to specific study results.    

                                                                                                   
    .0224732   .0674195         3   17710   1710    1000       1   2.596   2.999   3.412    1.000  
    .0224732   .0449464         2   17710   1710    1000    .999   1.709   2.007   2.325    1.004  
    .0224732   .0337098       1.5   17710   1710    1000    .839   1.345   1.525   1.789    1.016  
    .0224732   .0269678       1.2   17710   1710    1000    .311   1.298   1.395   1.552    1.163  
                                                                                                   
    .0112366   .0337098         3   17710   1710    1000       1   2.488   3.012   3.672    1.004  
    .0112366   .0224732         2   17710   1710    1000    .967   1.598   1.997   2.466    0.999  
    .0112366   .0168549       1.5   17710   1710    1000     .63   1.445   1.641   1.993    1.094  
    .0112366   .0134839       1.2   17710   1710    1000    .239   1.419   1.518   1.791    1.265  
                                                                                                   
    .0056183   .0168549         3   17710   1710    1000    .992   2.255   2.959   3.884    0.986  
    .0056183   .0112366         2   17710   1710    1000    .788   1.668   2.114   2.719    1.057  
    .0056183   .0084274       1.5   17710   1710    1000     .41   1.630   1.846   2.390    1.231  
    .0056183    .006742       1.2   17710   1710    1000     .16   1.608   1.772   2.105    1.476  
                                                                                                   
          r0         r1   true_rr      n0     n1   valid   power     p10     p50     p90   if_p50  
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First, the (classic) confidence interval around an effect size (such as a mean or mean difference, or an odds 
ratio, rate ratio, or hazard ratio) suggests -- loosely speaking -- a plausible range for that effect size estimate 
if (i) the experiment or study were to be repeated many times (ii) if all errors in the study were random 
(no systematic errors/biases); and (iii) if the underlying assumed statistical model (e.g., binomial in the 
case of an odds ratio or rate ratio) was correct.8    For example, for the resin worker case study presented 
earlier the odds ratio was estimated to be  1.76 with a (classic) 95% confidence interval  of (1.20, 2.58). 
This confidence interval can be interpreted as a plausible range of estimated odds ratios were the 
observational study to be repeated many times in the exact same way and if all differences in results in 
those study replications could be ascribed entirely to the random nature of the (here, Bernoulli/binomial) 
data generation process.   

What -emagnification- does is address a separate and distinct question from that addressed by the 
classic confidence interval.  This separate and distinct question was originally suggested by Ioannidis and 
later more directly by Gelman and Carlin (2014) for the case of continuous data (rather than categorical 
data that is the focus here). The question that the emagnification approach addresses is what would happen 
if the study were repeated many times given a range of user-assumed (true) effect sizes if one were 
interested in and focused on only statistically significant results.  This may be particularly useful to the user 
who is studying (expected) small effects using noisy measurements with small sample sizes since it is this 
user that is most likely to experience (or be bitten by) ESM. This is due in part to the fact that the low 
power of the study to detect small effect sizes leads unstable to p-values.9  The Greenland et al. (1994) 
resin worker case study presented earlier, for example, estimated an odds ratio of 1.76 that was shown to 
be statistically significant with “plausible” bounds for the classic 95% CI of 1.20 to 2.58 which assumes all 
errors are random.  E-magnification addresses an alternative but still very important and relevant question: 
if the study were to be repeated thousands of times and all errors were (still) random, what is a plausible 
range for (other) statistically significant results given the size/power of the actual study, the exposed 
proportion among the control reference group, and any (assumed series of) true effect sizes.  For the resin 
worker study, the -emagnification- command allows one to say that if the true odds ratio were only 
1.20 (instead of the 1.76 estimated by the study) then 80% of the statistically significant results if the study 
were to be repeated many  times would be between 1.42 and 1.79 (with half below the median estimated 
OR of 1.53 for statistically significant results and half above).10  Corresponding (80%) emagnification 
intervals if the true (yet in reality unknown) odds ratios were 1.5, 2.0 and 3.0 would be (1.45, 2.01), (1.60, 
2.55) and (2.35, 3.78), respectively. How might these emagnification results be interpreted by the data 
user?:  Although Greenland et al. (1994) estimated a statistically significant odds ratio for the relationship  
between lung cancer and exposure to resins of 1.76 (95% CI: 1.20 to 2.58), it would not be unusual to 
observe this high an  odds ratio if the true OR were in fact as low as 1.2 if one were to select (i.e., condition 
                                                 
8 A stricter and more technically accurate description would indicate that a confidence interval is an interval that is expected to 
contain the true parameter (or effect size) over an infinite number of repetitions of the study with a frequency no less than the 
confidence level, provided that the underlying statistical model is correct and there is no bias (Rothman et al. (2008)).   This is an 
indirect interpretation of what is likely the real question of interest when interpreting a single study of interest: “does the confidence 
interval so constructed contain the true parameter (or effect size) of interest?”  Unfortunately – and contrary to some 
interpretations by non-statisticians – the confidence interval is unable address this question under a frequentist interpretation.  The 
best that can be said and remain true to the definition of a confidence interval and how it is calculated would be to say the interval 
was calculated in such a way so that if the study were repeated many times, the true effect size would be expected to be contained 
in the calculated interval with a frequency no less than the confidence level used to calculated the confidence bounds, given the 
provisos that the underlying statistical model is correct and that all errors are random with none systematic (i.e., no bias).    
9 See for example Geoff Cumming’s the “dance of the p values” video at 
https://www.bing.com/videos/search?q=dance+of+the+p+values&view=detail&mid=6D48A4D9F8A653BA10496D48A4D9F8A653B
A1049&FORM=VIRE which illustrates how the p-value – particularly for low powered studies – can be very imprecise. 
10 Using emagnification proportion, p0(`=257/1202') or (1.2 1.5 2.0 3.0) n0(1202) n1(139) pctile(5 
50 95) nsim(1000) level(0.05) onesided seed(123) log 
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on) only those odds ratios that were statistically significant. More specifically, odds ratios for those results 
that were statistically significant would be expected to range from 1.42 to 1.79 in the middle 80% of the 
distribution of (those) observed statistically significant odds ratios.   What this means is that the 
observed/reported statistically significant odds ratio of 1.76 may have been substantively affected by ESM 
if observed odds ratio had been “called out” due to it passing the p<0.05 threshold. What does this mean 
for the data user?  The data user should understand that the study might not be adequately powered and 
that the “discovered” statistically significant effect size (here, a statistically significant odds ratio of 1.76 
with 95% CI of 1.20, 2.58) might be reasonably attributable to ESM even if the true yet unknown odds 
ratio were as low as 1.2.   In short, consideration of ESM allows the user to view the data from a different 
angle from that of the classic 95% confidence interval, one that allows “what if” scenarios to be played out 
to examine (particularly) the effects that low powered studies with imprecise effect sizes might have on 
statistically significant results.    

Some readers may question these ESM calculations which focus on and emphasizes the power of a study 
and consider them to be simply a variant of (discredited) post-hoc power calculations. They are not11.  
Instead, ESM calculations can be considered to be calculations related to the “design calculations” or “post-
data design analysis” advocated by Gelman and Carlin in their article in Perspectives in Psychological 
Science entitled “Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors” 
(Gelman and Carlin, 2014)12,13 and discussed further more recently in greater mathematical detail in Lu et 
al (2019).   Gelman and Carlin advocate using power calculations -- re-emphasized and named “design 
calculations ” to focus on errors in magnitude and sign instead of declarations of statistical significance -- 
after the data has been collected  to help inform a statistical data summary.14  Although they focus on 
continuous outcomes rather than the categorical/contingency table  outcomes focused on here with -
emagnification-, Gelman and Carlin state that such design calculations are intended to address the 
relevant post-data collection question of not ‘What is the power of a test?’, but instead the more relevant 
post-hoc question of ‘What might be expected to happen in studies of this size?’. This is what was done 
here in this article with -emagnification-:  a variety of plausible (odds or rate) ratios were selected to 
cover a broad range of plausible underlying true effect sizes, and the question ‘What might be expected to 
happen in studies of this size if the researcher focus is on discovered, statistically significant effect sizes?’ 
was addressed.  The answer for the Greenland et al. (2004) resin example as generated by -
emagnification- would be that the subset of repeated studies of this size, power, and background rate 

                                                 
11 The -emagnification- calculations are not post-hoc power calculations because they do not use the effect size estimates 
estimated by the study but instead estimate the observed effect size distributions for statistically-significant observed effects found 
assuming different, user-selected potential effect sizes.  
12 The article includes an R program on design calculations for experiments whose outcomes a continuous and that would be more 
typical in research in psychology (e.g., effect sizes measured as standardized mean differences) than epidemiology (e.g., effects sizes 
measured as odds, rate, or hazard ratios).  Although written about and discussed in their article in terms of the design calculations 
they advocate, the underlying concepts and their implications are the same as applied here with -emagnification-.   
13 Importantly – and of relevance here – the R code published as part of the Gelman and Carlson article has been recently translated 
to Stata in the Stata command  -rdesigni-  written and  recently updated by Daniel Klein at the University of Kassel and available 
for download from SSC (Klein, 2019).  This Stata command implements the design analysis approach discussed in Gelman and Carlin 
(2014) and -- as is true for the Gelman and Carlin publication – approaches the issue from a design analysis/calculation perspective 
for continuous outcome data which is not necessarily easily adapted to the odds and rate ratios considered more typical in 
epidemiology and discussed here in the context of -emagnification- .  A more recent user-written Stata program which is similar 
to Klein’s -rdesigni- is -retrodesign- has been written by Arial Linden and is also available for download from SSC (Linden, 
2019). Like Klein, this user-written program also is specific for continuous outcomes.  

14 See  “Yes, it makes sense to do design analysis (“power calculations”) after the data have been collected” at 
http://andrewgelman.com/2017/03/03/yes-makes-sense-design-analysis-power-calculations-data-collected/ 
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that generated statistically significant results would be expected 80% of the time to produce odds ratios of 
between 1.42 and 1.79 when the true odds ratio is 1.2. The median odds ratio found among such 
statistically significant results would be 1.53, and reflect an inflation or magnification factor (termed a Type 
M error or “Exaggeration ratio” by Gelman and Carlin) of 28%. The Stata ESM calculations/simulations 
discussed here can be considered “sister” calculations specific for categorical data to the (post-hoc) design 
calculations for continuous data advocated by Gelman and Carlin since they derive from the same principles 
and address the same issues.  

As we do here, Gelman and Carlin specifically recommend that such ESM-like post-hoc design calculations 
be done when strong statistically significant evidence for non-null effects have been found because “a 
[discovered statistically] significant result is often surprisingly likely to be in the wrong direction and to 
greatly overestimate an effect when researchers study small effects using noisy measurements and small 
sample sizes”. Gelman and Carlin continue and state that such calculations may be even more relevant for 
findings that are found to be statistically significant because the interpretation of a statistically significant 
result can change quite substantially depending on the researchers belief in a plausible size of the 
underlying effect.  Such an analysis will help better characterize study results and allow more meaningful 
interpretation of how unexpected a result might be in any discovery phase of research given a series of 
(user-defined) plausible true underlying effect sizes.    

While this paper has focused on the issues associated with effect size magnification, it is important 
nevertheless for the researcher to recognize that there can be very legitimate and reasonable countervailing 
or counteracting forces that tend to drive effect sizes in the other direction (toward the null) or work toward 
effect size “deflation” or “suppression”. Perhaps the most well-known of these is non-differential 
misclassification bias whereby non-differential misclassification of exposures (or disease) can result in a 
suppression of effect size, thereby leading under certain circumstances to a systematic under-prediction of 
the effect size (Rothman et al., 2008; Ioannidis, 2008). The oft-cited statement that “non-differential 
misclassification biases effects toward the null” is not always true and (particularly) for underpowered 
studies there can be counteracting forces that drive (significant) effect size estimates away from the null. 
Recognizing this is an important step forward. How these competing forces – biasing results toward the 
null in the case of non-differential misclassification and away from the null with effect size magnification 
when one focuses on statistically significant results -- “play out” will be very situation-dependent and cannot 
be predicted in advance; the -emagnification- command should help researchers characterize and 
begin to quantify to some extent the latter contributor.   With respect to the potential contribution of 
misclassification biases toward overall bias, quantitative bias analysis (QBA) – as implemented by Stata’s -
episens- command (Orsini et al., 2008), for example -- would serve as a useful adjunct to -
emagnification- in that it allows quantification of misclassification (and other) biases in a flexible and 
easy-to-use Stata software tool.  Specifically, -episens- is able to assess the uncertainty of exposure–
disease associations due to misclassification of the exposure or disease, due to selection bias, and due to 
unmeasured confounding: as such, it is able to quantitatively evaluate a variety of these potentially 
countervailing forces.15  Used in conjunction with or as a ‘second step” after evaluation of the potential for 
effect size magnification with -emagnification-  and -power twoproportions-, the -episens- 
command can supplement and better define other potential biases, some of which may operate in the 
opposite or “effect deflation” direction. Unmeasured (residual) confounding is potentially another concern 

                                                 
15 -biasepi- is a recently released user-written Stata command that also performs quantitative bias analysis and is available for 
download from the SSC ideas website by typing ssc install biasepi (Wu, 2019). Probabilistic bias analysis, however, is not supported.   
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in observational epidemiological studies, and a recent user-written Stata program that performs sensitivity 
analysis for unmeasured confounding is -evalue- which uses the methodology proposed by Vanderweele 
and Ding (2017) (Linden et al., 2019). 

Finally, it should be remembered that although the discussion and examples used here focused on 
epidemiology, the ESM phenomenon is a principle applicable to discovery science in general and is not a 
specific affliction or malady of epidemiology (Button (2013); Button et al.  (2013); Lehrer (2010); Ioannidis 
(2005); Ioannidis (2008); Reinhart (2015)). As indicated earlier, it is often seen in studies in pharmacology, 
in gene studies, in psychological studies, and in oft-cited medical literature.  Such truth inflation would be 
expected to be more characteristic in fields where studies are small and underpowered because such 
studies have widely varying results or where many researchers are performing similar studies and compete 
to publish “new” or “exciting” results (Ioannidis (2005); Reinhart (2015)).   

5. Summary and Conclusion 

While it is generally widely-known that small, low-powered studies can result in false negatives since the 
study power may be inadequate to reliably detect an effect size deemed to be meaningful by the 
investigator, it is less well known that these studies can result in inflation of estimates of effect size if those 
estimated effects are required to pass a statistical threshold (e.g., the common p<0.05 threshold used for 
statistical significance) to be judged important, relevant, or “discovered”.  More specifically: low powered 
studies tend to produce greater degrees of ESM in results that are found to be statistically significant (or 
pass other threshold criteria) than higher powered studies.  The phenomenon is not specific to epidemiology 
and is applicable to any science in which studies tend to be underpowered and emphasize the use of p-
values to “discover” an effect, and it is important that users of statistical study results recognize this issue 
and its potential interpretational consequences.  Specifically: any discovered associations from an 
underpowered study that are highlighted or focused upon on the basis of passing a statistical or other 
similar threshold will be systematically biased away from the null.   

The potential degree of this inflation or bias away from the null will depend on a number of issues including: 
the background rate of the outcome of interest; the sample size of the study; and the effect size of interest.  
It follows that low powered epidemiological studies investigating small or weak effects in populations that 
have a low background rate of the (health) outcome of interest will tend toward the greatest degree of 
ESM.  It is important to recognize that this is an issue related to how studies are interpreted by users, and 
not one that is intrinsic to or the fault of the study design, nor one that is related to good scientific principles 
or practices. 

This article introduces the Stata command -emagnification- which follows directly from work of John 
Ioannidis appearing in 2008 in the journal Epidemiology, “Why most discovered true associations are 
inflated” (Ioannidis, 2008) and to a lesser extent that of Gelman and Carlin (2014). In the 2008 Ioannidis 
article, Ioannidis illustrates by simulation the ESM phenomenon, and these ideas were incorporated into -
emagnification- such that the calculations similar to those done by Ioannidis to estimate the degree 
of potential ESM can be easily performed in Stata. The take home message from these simulations and the 
original work by Ioannidis and extensions by Gelman and Carlin (2014) is that a study should be not only 
suitably powered to avoid a false negative (Type II error) but also be suitably powered to avoid substantial 
ESM if it is statistically significant or other threshold-crossing criteria that are of interest.  It is important to 
note that if a study is suitably powered (oftentimes 80% or more), there is no systematic risk inflation   
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In sum, the effect size magnification phenomenon is real, is important for more appropriately interpreting 
underpowered studies, and in many ways is under-recognized and under-appreciated in the research 
community and among regulators and decision-makers.   The new -emagnification- Stata command 
introduced here is a tool that permits reported statistically-significant effect size estimates from possibly 
underpowered epidemiological studies to be better evaluated and judged. As such, it  can assist individuals 
reviewing such studies to put an observed statistically significant effect size into a fuller context that allows 
better judgments regarding adequacy of sample size vis-a-vis the observed effect size.  In doing so, users 
will gain a better understanding of power and sample size issues and in interpreting their potential 
implications with respect to study conclusions.   
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ANNEX A: Stata Code for -emagnification- 

 

. which emagnification 
c:\ado\plus\e\emagnification.ado 
*! v.1.0.0 Matteo Bottai 12aug2019 
**************************************************** 
. type "c:\ado\plus\e\emagnification.ado" 
 
*! v.1.0.0 Matteo Bottai 12aug2019 
cap program drop emagnification 
program emagnification, rclass 
version 14 
syntax namelist , * 
if strpos("proportion","`namelist'")==1 { 
syntax namelist , p0(numlist >0 <1) or(numlist >0) /// 
        n0(numlist integer >0) n1(numlist integer >0) /// 
        [ pctile(numlist integer >0 <100) ifactor(numlist integer >0 <100) nsim(numlist max=1 
integer >0) /// 
        level(numlist max=1 >0 <1) onesided EXACT seed(string) log clean format(string) ] 
if "`nsim'"=="" { 
        local nsim 10 
        } 
if "`seed'"=="" { 
        local seed = c(rngstate) 
        } 
if "`level'"=="" { 
        local level .05 
        } 
if "`pctile'"=="" { 
        local pctile = "10 50 90" 
        } 
if "`format'"=="" { 
        local format %4.3f 
        } 
if "`exact'"=="" { 
        local test "chi2" 
        local retp = cond("`onesided'"=="","r(p)","r(p)/2") 
        } 
        else { 
        local test "exact" 
        local retp = cond("`onesided'"=="","r(p_exact)","r(p1_exact)") 
        } 
preserve 
qui drop _all 
set seed `seed' 
qui set obs `=(`nsim')*(`: word count `p0'')*(`: word count `or'')*(`: word count `n0'')*(`: word 
count `n1'')' 
qui gen p0 = . 
qui gen p1 = . 
qui gen true_or = . 
qui gen n0 = . 
qui gen n1 = . 
qui gen sim = . 
qui gen or = . 
qui gen p = . 
local c = 0 
local s = 0 
qui foreach p_0 of local p0 { 
foreach o of local or { 
local p_1 = (`o'*`p_0'/(1-`p_0'))/(1+(`o'*`p_0'/(1-`p_0'))) 
foreach n_0 of local n0 { 
foreach n_1 of local n1 { 
local ++s 
if "`log'"!="" { 
        noi di _new as txt "Scenario " as res `s' as txt ": p0 = " as res `p_0' as txt ", or = " 
as res `o' as txt ", n0 = " as res `n_0' as txt ", n1 = " as res `n_1' 
        noi di as txt "Completed: " _cont 
        } 
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cap set obs `=`n_0'+`n_1'' 
gen x = _n>`n_0' in 1/`=`n_0'+`n_1'' 
forv i = 1/`nsim' { 
if "`log'"!="" & mod(`i',round(`nsim'/10))==0 { 
        noi di as txt int(`i'/round(`nsim'/10))*10 "% " _cont 
        } 
local ++c 
replace p0 = `p_0' in `c' 
replace p1 = `p_1' in `c' 
replace true_or = `o' in `c' 
replace n0 = `n_0' in `c' 
replace n1 = `n_1' in `c' 
replace sim = `i' in `c' 
gen y = (runiform()<(cond(x==0,`p_0',`p_1'))) 
tab y x, matcell(f) `test' 
replace or = f[1,1]*f[2,2]/f[1,2]/f[2,1] in `c' 
replace p = `retp' in `c' 
drop y 
} 
drop x 
} 
} 
} 
} 
// qui replace or = c(maxfloat) if sim!=. & p!=. & or==. 
qui drop if sim==. | p==. 
qui gen if_or = or/true_or 
qui egen group = group(p0 true_or n0 n1) 
qui egen valid = count(p), by(group) 
qui egen power = mean((p<`level') & ((or>1)==(true_or>1) | "`onesided'"=="")), by(group) 
qui keep if (p<`level') & ((or>1)==(true_or>1) | "`onesided'"=="") 
qui foreach p of local pctile { 
        egen p`p' = pctile(or), p(`p') by(group) 
        format `format' p`p' 
        } 
qui foreach p of local ifactor { 
        egen if_p`p' = pctile(if_or), p(`p') by(group) 
        format `format' if_p`p' 
        } 
qui egen tag = tag(group) 
qui keep if tag==1 
drop or p sim group tag if_or 
di _newline(2) as txt "The tests are " as res cond("`onesided'"=="", "two-sided", "one-sided") as 
txt " with level = " as res `level' 
list , noobs sepby(p0) `clean' 
} 
else if strpos("rate","`namelist'")==1 { 
syntax namelist , r0(numlist >0) rr(numlist >0) /// 
        n0(numlist integer >0) n1(numlist integer >0) /// 
        [ pctile(numlist integer >0 <100) ifactor(numlist integer >0 <100) nsim(numlist max=1 
integer >0) /// 
        level(numlist max=1 >0 <1) onesided EXACT seed(string) log clean format(string) ] 
if "`nsim'"=="" { 
        local nsim 10 
        } 
if "`seed'"=="" { 
        local seed = c(rngstate) 
        } 
if "`level'"=="" { 
        local level = .05 
        } 
if "`pctile'"=="" { 
        local pctile = "10 50 90" 
        } 
if "`format'"=="" { 
        local format %4.3f 
        } 
preserve 
qui drop _all 
set seed `seed' 
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qui set obs `=(`nsim')*(`: word count `r0'')*(`: word count `rr'')*(`: word count `n0'')*(`: word 
count `n1'')' 
qui gen r0 = . 
qui gen r1 = . 
qui gen true_rr = . 
qui gen n0 = . 
qui gen n1 = . 
qui gen sim = . 
qui gen rr = . 
qui gen p = . 
local c = 0 
local s = 0 
qui foreach r_0 of local r0 { 
foreach r of local rr { 
local r_1 = `r'*`r_0' 
foreach n_0 of local n0 { 
foreach n_1 of local n1 { 
local ++s 
if "`log'"!="" { 
        noi di _new as txt "Scenario " as res `s' as txt ": r0 = " as res `r_0' as txt ", rr = " 
as res `r' as txt ", n0 = " as res `n_0' as txt ", n1 = " as res `n_1' 
        noi di as txt "Completed: " _cont 
        } 
cap set obs `=`n_0'+`n_1'' 
gen x = _n>`n_0' in 1/`=`n_0'+`n_1'' 
forv i = 1/`nsim' { 
if "`log'"!="" & mod(`i',round(`nsim'/10))==0 { 
        noi di as txt int(`i'/round(`nsim'/10))*10 "% " _cont 
        } 
local ++c 
qui replace r0 = `r_0' in `c' 
qui replace r1 = `r_1' in `c' 
qui replace true_rr = `r' in `c' 
qui replace n0 = `n_0' in `c' 
qui replace n1 = `n_1' in `c' 
qui replace sim = `i' in `c' 
gen y = rpoisson(cond(x==0,`r_0',`r_1')) 
cap poisson y x 
if _rc==0 { 
        replace rr = exp(_b[x]) in `c' 
        if "`exact'"=="" { 
                replace p = normal(-abs(_b[x]/_se[x]))*2/(1+("`onesided'"!="")) in `c' 
                } 
                else { 
                cap expoisson y x 
                if _rc==0 { 
                        mat p = e(p_sufficient) 
                        replace p = p[1,1]/(1+("`onesided'"!="")) in `c' 
                        } 
                } 
        } 
drop y 
} 
drop x 
} 
} 
} 
} 
qui drop if sim==. | p==. 
qui gen if_rr = rr/true_rr 
qui egen group = group(r0 true_rr n0 n1) 
qui egen valid = count(p), by(group) 
qui egen power = mean((p<`level') & (sign(rr-1)==sign(true_rr-1))), by(group) 
qui keep if (p<`level') & (sign(rr-1)==sign(true_rr-1)) 
qui foreach p of local pctile { 
        egen p`p' = pctile(rr), p(`p') by(group) 
        format `format' p`p' 
        } 
qui foreach p of local ifactor { 
        egen if_p`p' = pctile(if_rr), p(`p') by(group) 
        format `format' if_p`p' 
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        } 
qui egen tag = tag(group) 
qui keep if tag==1 
drop rr p sim group tag if_rr 
di _newline(2) as txt "The tests are " as res cond("`onesided'"=="", "two-sided", "one-sided") as 
txt " with level = " as res `level' 
list , noobs sepby(r0) `clean' 
} 
else { 
        di as err "Only 'proportion' and 'rate' are allowed" 
        exit 
        } 
tempname table 
mkmat _all, matrix(`table') 
return matrix table `table' 
return scalar level = `level' 
return local seed `seed' 
return local cmdline "emagnification `0'" 
restore 
end 
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ANNEX B: Stata Help File for -emagnification- 

Title 

    emagnification -- Effect magnification 

Syntax 

    Effect magnification for proportions 

        emagnification proportion, p0(numlist) or(numlist) n0(numlist) n1(numlist) 
[other_options] 

    Effect magnification for rates 

        emagnification rate, r0(numlist) rr(numlist) n0(numlist) n1(numlist) 
[other_options] 

 

Description 

    emagnification estimates effect magnification of proportions and rates through 
simulations. 

Options 

      p0(numlist) specifies the proportions in the reference group 

      or(numlist) specifies the odds ratios of the exposure group versus the reference 
group 

      r0(numlist) specifies the rates in the reference group 

      rr(numlist) specifies the risk ratios of the exposure group versus the reference 
group 

      n0(numlist) specifies the sample size in the reference group 

      n1(numlist) specifies the sample size in the exposure group 

 

Other options 

      pctile(numlist)  shows the percentiles specified in numlist; defaults to 10 50 
90 

      ifactor(numlist) shows the inflation factors of the percentiles specified in 
numlist 

      nsim(#)          number of simulated datasets; defaults to 10 

      level(#)         significance level of the test; defaults to 0.05 

      onesided         specifies a one-sided test 
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      exact for proportion specifies the Fisher's exact test instead of the default 
chi-square test; for rates specifies the exact Poisson regression instead of the 
default Poisson regression 

      seed(string)     specifies the seed for the pseudo-random numbers generator 

      log              shows the simulation iterations 

      clean            shows the results without separator lines 

      format(format)   specifies the display format for the percentiles 

 

Examples 

    Estimate the effect magnification for a proportion: 

        emagnification proportion, p0(.5) or(2) n0(100) n1(100) 

    Estimate the effect magnification for a rate: 

        emagnification rate, r0(.5) rr(2) n0(100) n1(100) 

    Estimate the effect magnification for a proportion in multiple scenarios: 

        emagnification proportion, p0(.5 .9) or(1.5 2) n0(100 200) n1(100 200) 
pctile(50 90) ifactor(50) nsim(20) level(.1) onesided seed(123) log clean 

 

    Show the saved results of the latest estimation: 

        return list 

        matrix list r(table) 

Saved results 

    Scalars    

      r(level)   the level of the tests 

    Macros     

      r(cmdline) command as typed 

      r(seed)    the seed used by the pseudo-random numbers generator 

    Matrices   

      r(table)   the table of the results 

Also see 

    [PSS] power 

    [R] seed 
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ANNEX C: Sample Test files for -emagnification- 

 

Testing of -emagnification- was done by comparing native Stata and SAS code for power 
calculations (-power twoproportions- and PROC POWER, respectively) to the power simulations 
resulting from -emagnification- and also comparing the output of -emagnification- to output 
from SAS code originally developed for use in Annex D of  ‘Scientific Opinion of the PPR Panel on the 
follow-up of the findings of the External Scientific Report Literature review of epidemiological studies 
linking exposure to pesticides and health effects’ published by the European Food Safety Agency’s Panel 
on Plant Protection Products and their Residues (PPR) in the EFSA Journal (EFSA PPR Panel Report, 
2017). Below are three representative test cases which illustrate some of the analyses and comparisons 
which were performed.   

Illustrative Test Case #1 

We selected a study investigating the association between malathion and non-Hodgkin's lymphoma (NHL) 
(Waddell et al. (2001), [link]).  Here, we have i) the number of subjects in the reference non-exposed 
group = 1018 (from Table 1 of the Wadell et al. article: non-farmers = 243 cases + 775 controls); ii) the 
number of subjects in the exposed group = 238 (from Table 4 of Wadell et al. : malathion users = 91 
cases + 147 controls); and iii) the number of cases in the reference non-exposed group =243 (from 
Table 1: 243 cases in non-farmer or non-exposed group).   While the authors reported an adjusted OR = 
1.6, 95% CI = 1.2 – 2.2, we can compute the crude OR = 1.97, 95% CI = 1.46 – 2.66: 

. cci 91 243 147 775, woolf 
 
                                                         Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |        91         243  |        334       0.2725 
        Controls |       147         775  |        922       0.1594 
-----------------+------------------------+------------------------ 
           Total |       238        1018  |       1256       0.1895 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         1.974329       |    1.464792    2.661111 (Woolf) 
 Attr. frac. ex. |         .4934988       |    .3173092    .6242172 (Woolf) 
 Attr. frac. pop |         .1344562       | 
                 +------------------------------------------------- 
                               chi2(1) =    20.39  Pr>chi2 = 0.0000 

 

 
We can calculate the power of the comparisons between the ever vs. never exposed, given the 
assumption that any true OR = 1.2, 1.5, 2.0,  etc.  using Stata’s standard power commands:  

 
. power twoproportions (`=0.5* 243/1018' `=243/1018' `=2 * 243/1018'), 
test(chi2) oratio(1.2 1.5 2.0 3.0) n1(1018) n2(238) onesided 
 
Estimated power for a two-sample proportions test 
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Pearson's chi-squared test  
Ho: p2 = p1  versus  Ha: p2 > p1 
 
  +-------------------------------------------------------------------------+ 
  |   alpha   power       N      N1      N2   delta      p1      p2  oratio | 
  |-------------------------------------------------------------------------| 
  |     .05   .2279    1256    1018     238     1.2   .1194   .1399     1.2 | 
  |     .05    .647    1256    1018     238     1.5   .1194   .1689     1.5 | 
  |     .05   .9693    1256    1018     238       2   .1194   .2133       2 | 
  |     .05       1    1256    1018     238       3   .1194   .2891       3 | 
  |     .05   .3047    1256    1018     238     1.2   .2387   .2734     1.2 | 
  |     .05   .8149    1256    1018     238     1.5   .2387   .3199     1.5 | 
  |     .05   .9971    1256    1018     238       2   .2387   .3854       2 | 
  |     .05       1    1256    1018     238       3   .2387   .4847       3 | 
  |     .05   .3522    1256    1018     238     1.2   .4774    .523     1.2 | 
  |     .05   .8779    1256    1018     238     1.5   .4774   .5781     1.5 | 
  |     .05   .9992    1256    1018     238       2   .4774   .6463       2 | 
  |     .05       1    1256    1018     238       3   .4774   .7327       3 | 
  +-------------------------------------------------------------------------+ 

 
Such power relations are graphed below with the middle dotted line in the graph showing power at the 
NHL proportion of 0.2387 among non-farmers/non-exposed and the left-hand and right-hand vertical 
dashed lines representing a form of sensitivity analysis at one-half and twice the NHL proportion among 
non-farmers/non-exposed, respectively. 

power twoproportions (`=0.5* 243/1018'(0.01) `=2 * 243/1018'), 
test(chi2) oratio(1.2 1.5 2.0 3.0) n1(1018) n2(238)graph(recast(line) 
xline(`=0.5* 243/1018'  `=243/1018' `=2 * 243/1018',lpattern(dash)) 
legend(rows(1)size(small)) ylabel(0.2(0.2)1.0)) onesided 
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Using -emagnification-, we see that the predicted powers are similar to those produced above by 
Stata’s -power twoproportion- command:   

 
emagnification proportion, p0(`=0.5* 243/1018' `=243/1018' `=2 * 
243/1018') or(1.2 1.5 2.0 3.0) n0(1018) n1(238) pctile(10 50 90) 
nsim(1000) onesided seed(123) 
 
The tests are one-sided with level = .05 

 
  +------------------------------------------------------------------------------------+ 
  |       p0         p1   true_or     n0    n1   valid   power     p10     p50     p90 | 
  |------------------------------------------------------------------------------------| 
  | .1193517    .139883       1.2   1018   238    1000    .228   1.417   1.524   1.784 | 
  | .1193517   .1689455       1.5   1018   238    1000    .625   1.445   1.650   2.034 | 
  | .1193517   .2132514         2   1018   238    1000    .976   1.610   1.997   2.518 | 
  | .1193517   .2890563         3   1018   238    1000       1   2.406   3.013   3.780 | 
  |------------------------------------------------------------------------------------| 
  | .2387033   .2733921       1.2   1018   238    1000      .3   1.319   1.422   1.616 | 
  | .2387033   .3198771       1.5   1018   238    1000    .817   1.361   1.568   1.868 | 
  | .2387033   .3854084         2   1018   238    1000    .996   1.646   1.988   2.416 | 
  | .2387033   .4847074         3   1018   238    1000       1   2.464   2.988   3.633 | 
  |------------------------------------------------------------------------------------| 
  | .4774067   .5229555       1.2   1018   238    1000    .321   1.287   1.367   1.565 | 
  | .4774067   .5781126       1.5   1018   238    1000    .866   1.331   1.535   1.819 | 
  | .4774067   .6462766         2   1018   238    1000    .999   1.665   1.971   2.448 | 
  | .4774067   .7326633         3   1018   238    1000       1   2.419   2.998   3.724 | 
  +------------------------------------------------------------------------------------+ 

 
Further, we also see that the p10, p50, p90 and the power values from Stata’s -emagnification- 
command above are similar to those generated by the corresponding separately-developed SAS code as 
illustrated in the summary table below.  
 

SAS Simulation Results Illustrating Effect Size Magnification Given True Odds Ratios of 1.2, 1.5, 2.0, 
and 3.0a  

True values 
N 

analyzed 
datasets

Powerb

Distribution of Observed Significant ORs 

Proportion of diseased 
individuals in non-exposed 

group 
OR N 10th 

Percentile
Median 

(% inflation)  
90th 

Percentile

0.1194 

(1/2 background) 

1.2 1000 0.22 220 1.4 1.5 (25%) 1.8 

1.5 1000 0.66 661 1.5 1.7 (13%) 2.0 

2 1000 0.97 972 1.6 2.0 (0%) 2.5 

3 1000 1.0 1000 2.4 3.0 (0%) 3.7 

0.2387 

(1x background) 

1.2 1000 0.32 323 1.3 1.4 (17%) 1.6 

1.5 1000 0.81 812 1.4 1.6 (7%) 1.8 

2 1000 1.0 997 1.6 2.0 (0%) 2.4 

3 1000 1.0 1000 2.5 3.0 (0%) 3.6 

0.4774 1.2 1000 0.34 337 1.3 1.4 (17%) 1.6 
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SAS Simulation Results Illustrating Effect Size Magnification Given True Odds Ratios of 1.2, 1.5, 2.0, 
and 3.0a  

True values 
N 

analyzed 
datasets

Powerb

Distribution of Observed Significant ORs 

Proportion of diseased 
individuals in non-exposed 

group 
OR N 10th 

Percentile
Median 

(% inflation)  
90th 

Percentile

(2x background) 1.5 1000 0.87 872 1.3 1.5 (0%) 1.8 

2 1000 1.0 1000 1.6 2.0 (0%) 2.5 

3 1000 1.0 1000 2.4 3.0 (0%) 3.7 

NOTE: The logistic regression model was used to compute the odds ratios for the two groups. The EXACT Test was used in the 
analysis of some datasets when the maximum likelihood estimate did not exist (perhaps due to a zero cases in one of the groups).
a: One-sided test, α = 0.05, N non-exposed=1018, N malathion exposed = 238,  N iterations = 1000 (datasets) 
b: the power resulting from this simulation may be close but not match exactly with the power calculated from built-in procedures 
in statistical software such as SAS (PROC POWER) or Stata (power twoproportion).  This may be due to number of datasets simulated 
being of insufficient size.  However, 1000 iterations is sufficient to adequately estimate the power and to illustrate the degree of 
effect size magnification given a statistically significant result (here alpha ≤ 0.05).   

 

 

 

Illustrative Test Case #2 

The following is an excerpted table from an article that looks at odds ratios for semen quality for men 
exposed to elevated pesticide levels.  Looking specifically at atrazine in MO, we see an OR of 11.3 (95% 
CI:  1.3, 98.9).    
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Here is the Stata run which reproduces the observed values from the above table  for the Missouri data 
set:   

 
 

. cci 8 17 1 24, woolf 
 
                                                         Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |         8          17  |         25       0.3200 
        Controls |         1          24  |         25       0.0400 
-----------------+------------------------+------------------------ 
           Total |         9          41  |         50       0.1800 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         11.29412       |    1.289901    98.88906 (Woolf) 
Attr. frac. ex. |         .9114583       |    .2247467    .9898877 (Woolf) 
Attr. frac. pop |         .2916667       | 
                 +------------------------------------------------- 
                               chi2(1) =     6.64  Pr>chi2 = 0.0100 

 

 
Here are 100,000 iterations in Stata, first not using the “exact” option and then using it:  

. emagnification proportion, p0(`=1/25') or(1.2) n0(25) n1(25) pctile(10 50 90) 
ifactor(50) nsim(100000) level(0.05) onesided seed(123) log 
 
Scenario 1: p0 = .04, or = 1.2, n0 = 25, n1 = 25 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 
The tests are one-sided with level = .05 
 
  +---------------------------------------------------------------------------------------+ 
  |  p0        p1   true_or   n0   n1   valid      power     p10     p50     p90   if_p50 | 
  |---------------------------------------------------------------------------------------| 
  | .04   .047619       1.2   25   25   89403   .0481192   6.000   6.000   7.579    5.000 | 
  +---------------------------------------------------------------------------------------+ 
 
 
 
. emagnification proportion, p0(`=1/25') or(1.2) n0(25) n1(25) pctile(10 50 90) 
ifactor(50) nsim(100000) level(0.05) onesided seed(123) exact log 
 
Scenario 1: p0 = .04, or = 1.2, n0 = 25, n1 = 25 
Completed: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 
The tests are one-sided with level = .05 
 
  +---------------------------------------------------------------------------------------+ 
  |  p0        p1   true_or   n0   n1   valid      power     p10     p50     p90   if_p50 | 
  |---------------------------------------------------------------------------------------| 
  | .04   .047619       1.2   25   25   89403   .0028746   7.579   7.579   9.333    6.316 | 
  +---------------------------------------------------------------------------------------+ 

 
 
… and here are the SAS results for the corresponding SAS code for effect size magnification:  
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SAS code results for 200K iterations: 
 

======================================================================== 
                                     NC=25, NE=25, NSim=200000 
 
                                        The MEANS Procedure 
 
                                   Analysis Variable : OddsRatio 
 
       CRate           OR                 N                  Power       N Obs      10th Pctl      Median     90th Pctl 
 ======================================================================== 
          0.04            1.2         178698     0.0119195514        2130             5.89           5.89             7.83 
 ======================================================================== 

 
 

 
Since both Stata and SAS have built-in procedures to calculate (one-sided) power ( i.e., -power 
twoproportion- and PROC POWER, respectively), we looked at the results of each  software’s built-in 
procedures for power calculations and how they compare, both to each other and to the power estimates 
provided above.       

As highlighted below and using a reference group proportion of 0.04, a true odds ratio of 1.2, and 
n1=n2=25 along with a one-sided test (Ho: p2 = p1 versus  Ha: p2 > p1),  both Stata’s native -power 
twoproportion-  and SAS’s PROC POWER  estimate the power to be 0.065:   

 
Stata -power twoproportions- results using the chi2 test: 
 

. power twoproportions 0.04, test(chi2) oratio(1.2) n1(25) n2(25) 
onesided 
 
Estimated power for a two-sample proportions test 
Pearson's chi-squared test  
Ho: p2 = p1  versus  Ha: p2 > p1 
 
Study parameters: 
 
        alpha =    0.0500 
            N =        50 
           N1 =        25 
           N2 =        25 
        delta =    1.2000  (odds ratio) 
           p1 =    0.0400 
           p2 =    0.0476 
   odds ratio =    1.2000 
 
Estimated power: 
 
        power =    0.0651  
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Stata -power twoproportions- results using Fisher’s exact test: 
 
. power twoproportions 0.04, test(fisher) oratio(1.2) n1(25) n2(25) 
onesided 
 
Estimated power for a two-sample proportions test 
Fisher's exact test 
Ho: p2 = p1  versus  Ha: p2 > p1 
 
Study parameters: 
 
        alpha =    0.0500 
            N =        50 
           N1 =        25 
           N2 =        25 
        delta =    1.2000  (odds ratio) 
           p1 =    0.0400 
           p2 =    0.0476 
   odds ratio =    1.2000 
 
Estimated power and alpha: 
 
        power =    0.0025 
 actual alpha =    0.0011 
 
 

 

Illustrative Test Case #3 

The following is an excerpted from article on  Parkinson’s Disease (PD) in individuals  exposed to 
paraquat (Lee et al., 2012). Here is the table from the Lee et al (2012) article;  the adjusted OR (aOR) 
for exposure to “ambient residential and workplace exposures” is a statistically significant 1.36 (95% CI: 
1.02-1.81) and the corresponding crude OR (cOR) is also statistically significant at 1.43 (95% CI: 1.11-
1.84):     
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Performing this in Stata recognizing that the Number of Controls =754, Number of Cases =357, and  
Number of Exposed Individuals in Control group =291: 

. cci 169 188 291 463, woolf 
 
                                                         Proportion 
                 |   Exposed   Unexposed  |      Total     Exposed 
-----------------+------------------------+------------------------ 
           Cases |       169         188  |        357       0.4734 
        Controls |       291         463  |        754       0.3859 
-----------------+------------------------+------------------------ 
           Total |       460         651  |       1111       0.4140 
                 |                        | 
                 |      Point estimate    |    [95% Conf. Interval] 
                 |------------------------+------------------------ 
      Odds ratio |         1.430266       |    1.109128    1.844387 (Woolf) 
Attr. frac. ex. |         .3008294       |    .0983908    .4578144 (Woolf) 
Attr. frac. pop |         .1424094       | 
                 +------------------------------------------------- 
                               chi2(1) =     7.64  Pr>chi2 = 0.0057 

 

 Using Stata’s -powertwoproportions- command,  
 

. power twoproportions (`=0.5* 291/754' `=291/754' `=2 * 291/754'), test(chi2) 
oratio(1.1 1.2 1.5 2.0 3.0) n1(754)n2(357) onesided 
 
Estimated power for a two-sample proportions test 
Pearson's chi-squared test  
Ho: p2 = p1  versus  Ha: p2 > p1 
 
  +-------------------------------------------------------------------------+ 
  |   alpha   power       N      N1      N2   delta      p1      p2  oratio | 
  |-------------------------------------------------------------------------| 
  |     .05   .1498    1111     754     357     1.1    .193   .2082     1.1 | 
  |     .05   .3175    1111     754     357     1.2    .193    .223     1.2 | 
  |     .05   .8426    1111     754     357     1.5    .193    .264     1.5 | 
  |     .05   .9986    1111     754     357       2    .193   .3235       2 | 
  |     .05       1    1111     754     357       3    .193   .4177       3 | 
  |     .05   .1802    1111     754     357     1.1   .3859   .4088     1.1 | 
  |     .05    .403    1111     754     357     1.2   .3859   .4299     1.2 | 
  |     .05   .9309    1111     754     357     1.5   .3859   .4853     1.5 | 
  |     .05   .9999    1111     754     357       2   .3859   .5569       2 | 
  |     .05       1    1111     754     357       3   .3859   .6534       3 | 
  |     .05   .1483    1111     754     357     1.1   .7719   .7882     1.1 | 
  |     .05   .3068    1111     754     357     1.2   .7719   .8024     1.2 | 
  |     .05   .7969    1111     754     357     1.5   .7719   .8354     1.5 | 
  |     .05   .9929    1111     754     357       2   .7719   .8713       2 | 
  |     .05       1    1111     754     357       3   .7719   .9103       3 | 
  +-------------------------------------------------------------------------+ 

 

And then graphing this:   
 

power twoproportions (`=0.45* 291/754'(0.01) `=2.1 * 291/754'), 
test(chi2) oratio(1.1 1.2 1.2 1.5 2.0 3.0) n1(754) n2(357) 
graph(recast(line) xline(`=0.5* 291/754'  `=291/754' `=2 * 
291/754',lpattern(dash)) legend(rows(1)size(small)) 
ylabel(0.2(0.2)1.0)scheme(s2color)) onesided 
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And finally using the -emagnification- command:  
 
emagnification proportion, p0(`=0.5* 291/754' `=291/754' `=2 * 291/754') 
or(1.1 1.2 1.5 2.0 3.0) n0(754) n1(357) pctile(10 50 90)ifactor(50) 
nsim(1000) level(0.05) onesided seed(123)  
 
  
The tests are one-sided with level = .05 
 
 
  +--------------------------------------------------------------------------------------------+ 
  |       p0         p1   true_or    n0    n1   valid   power     p10     p50     p90   if_p50 | 
  |--------------------------------------------------------------------------------------------| 
  | .1929708   .2082493       1.1   754   357    1000    .164   1.310   1.376   1.574    1.251 | 
  | .1929708     .22296       1.2   754   357    1000    .304   1.308   1.401   1.603    1.167 | 
  | .1929708   .2639855       1.5   754   357    1000    .865   1.342   1.543   1.826    1.029 | 
  | .1929708   .3235131         2   754   357    1000    .998   1.660   1.999   2.422    0.999 | 
  | .1929708   .4177034         3   754   357    1000       1   2.485   3.000   3.580    1.000 | 
  |--------------------------------------------------------------------------------------------| 
  | .3859417   .4087601       1.1   754   357    1000    .169   1.249   1.314   1.446    1.194 | 
  | .3859417   .4299434       1.2   754   357    1000    .383   1.252   1.330   1.497    1.108 | 
  | .3859417   .4852696       1.5   754   357    1000    .951   1.329   1.523   1.780    1.015 | 
  | .3859417   .5569378         2   754   357    1000       1   1.694   2.009   2.359    1.004 | 
  | .3859417   .6534431         3   754   357    1000       1   2.503   2.989   3.560    0.996 | 
  |--------------------------------------------------------------------------------------------| 
  | .7718833   .7882295       1.1   754   357    1000    .155   1.315   1.384   1.531    1.258 | 
  | .7718833   .8023897       1.2   754   357    1000    .322   1.323   1.426   1.633    1.188 | 
  | .7718833   .8354067       1.5   754   357    1000    .821   1.375   1.581   1.917    1.054 | 
  | .7718833   .8712575         2   754   357    1000    .995   1.579   1.989   2.556    0.995 | 
  | .7718833   .9103233         3   754   357    1000       1   2.350   3.053   3.928    1.018 | 
  +--------------------------------------------------------------------------------------------+ 
 
 

Again, we see the output with respect matches that of Stata’s -power twoproportion- command.  

Finally, we can also see that the p10, p50, p90 and if_p50 values also match those produced by SAS and 
summarized in the table below:  
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SAS Simulation Results Illustrating Effect Size Magnification Given True Odds Ratios of 1.1, 1.2, 1.5, 2.0, and 3.0a 

True values 

N analyzed 
datasets Powerb 

Distribution of Observed Significant ORs 

Proportion of exposed 
individuals in control 

group 
OR N 10th Percentile

Median 

 
90th 

Percentile 

0.1929708 

(1/2 background) 

1.1 1000 0.153 153 1.31 1.38 1.55 

1.2 1000 0.302 302 1.32 1.41 1.62 

1.5 1000 0.842 842 1.34 1.54 1.83 

2 1000 1 1000 1.67 2.00 2.39 

3 1000 1 1000 2.53 3.04 3.66 

0.3859417 

(1x background) 

1.1 1000 0.164 164 1.25 1.30 1.45 

1.2 1000 0.373 373 1.25 1.33 1.51 

1.5 1000 0.932 932 1.31 1.51 1.76 

2 1000 1 1000 1.71 2.01 2.38 

3 1000 1 1000 2.52 3.00 3.60 

0.7718833 

(2x background) 

1.1 1000 0.149 149 1.31 1.39 1.58 

1.2 1000 0.312 312 1.32 1.42 1.64 

1.5 1000 0.803 803 1.37 1.56 1.93 

2 1000 0.992 992 1.61 2.01 2.54 

3 1000 1 1000 2.38 3.04 4.04 

NOTE: The logistic regression model was used to compute the odds ratios for the two groups. The EXACT Test was used in the 
analysis of some datasets when the maximum likelihood estimate did not exist (perhaps due to a zero exposed in one of the 
groups). 
a One-sided test, α = 0.05, N control=754, N cases = 357,  N iterations = 1000 (datasets) 
b The power resulting from this simulation may be close but not match exactly with the power calculated from built-in procedures 
in statistical software such as SAS (PROC POWER) or Stata (power twoproportion).  This may be due to number of datasets 
simulated being of insufficient size.  However, 1000 iterations is sufficient to adequately estimate the power and to illustrate the 
degree of effect size magnification given a statistically significant result (here alpha ≤ 0.05). 
 


