

NATIONAL ENVIRONMENTAL MONITORING COMMISSIONED BY THE SWEDISH EPA

Report to the Swedish EPA (the Health-Related Environmental Monitoring Program)

Temporal trends of suspect and target per/polyfluoroalkyl substances (PFASs), Extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017

Luc T. Miaz¹, Merle M. Plassmann¹, Irina Gyllenhammer¹, Anders Bignert, Oskar Sandblom¹, Sanna Lignell², Anders Glynn³ and Jonathan P. Benskin¹

¹Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Sweden

²Swedish National Food Agency, Uppsala, Sweden

³Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU)

NATIONELL MILJÖÖVERVAKNING PÅ UPPDRAG AV NATURVÅRDSVERKET

Temporal trends of suspect and target per/polyfluoroalkyl substances (PFASs), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017

Rapportförfattare Luc T Miaz, Stockholms universitet Merle M Plassmann, Stockholms universitet Irina Gyllenhammar, Livsmedelsverket Anders Bignert, Sanna lignell, Livsmedelsverket Ander Glynn, Sveriges Lantbruksuniversitet Jonathan P Benskin, Stockholms universitet	Utgivare Livsmedelsverket Postadress Box 622, 751 26 Uppsala Telefon 018-175500
Rapporttitel Temporal trends of suspect and target per/polyfluoroalkyl substances (PFASs), Extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala 1996- 2017	Beställare Naturvårdsverket 106 48 Stockholm Finansiering Nationell hälsorelaterad miljöövervakning
Nyckelord för plats Uppsala	
Nyckelord för ämne PFAS, extraherbart organsikt fluor, totalt	fluor, blodserum, tidstrend, kvinnor
Tidpunkt för insamling av underlagsda 1996-2017	ta
Sammanfattning	

Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFASs), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017

Luc T. Miaz,*^a Merle M. Plassmann,^a Irina Gyllenhammer,^b Anders Bignert,^c Oskar Sandblom,^a Sanna Lignell,^b Anders Glynn^{b, d} and Jonathan P. Benskin^{*a}

a. Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden

b. Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden

c. Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden

d. Department of Biomedical Sciences and Veterinary Public Health, Swedish University of

Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden

*Corresponding authors: Luc@miaz.ch, Jon.Benskin@aces.su.se

GRAPHICAL ABSTRACT

ABSTRACT

A combined method for quantitative, suspect, and non-target screening of per- and polyfluoroalkyl substances (PFASs) was developed using ultra-high pressure liquid chromatography-ultra-high resolution (Orbitrap) mass spectrometry. The method was applied together with measurements of totaland extractable organofluorine (TF and EOF, respectively), to pooled serum samples from 1996–2017 from first-time mothers living in the county of Uppsala, Sweden, some of which were exposed to drinking water contaminated with perfluorohexane sulfonate (PFHxS) and other PFASs until mid-2012. Declining trends were observed for all target PFASs as well as TF, with homologue-dependent differences in year of onset of decline. Only 33% of samples displayed detectable EOF, and amongst these samples the percentage of EOF explained by target PFASs declined significantly (-3.5% per year) over the entire study period. This finding corroborates prior observations in Germany after the year 2000, and may reflect increasing exposure to novel PFASs which have not yet been identified. Nontarget time trend screening revealed 3 unidentified features with time trends matching PFHxS (Spearman's $\rho > 0.5$). These features require further investigation, but may represent contaminants which co-occurred with PFHxS in the contaminated drinking water.

ENVIRONMENTAL SIGNIFICANCE

The global occurrence of per- and polyfluoroalkyl substances (PFASs) is of concern for both human and wildlife health. Among the >4000 registered PFASs, only a few are commonly monitored, suggesting that exposure to these chemicals may be underestimated. The present work investigated temporal trends of suspect- and target PFASs, along with extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum (1996-2017) from a cohort historically exposed to PFAS-contaminated drinking water. Declining temporal trends were observed for all target PFASs, demonstrating the positive impact of phase-outs and regulation, along with local drinking water clean-up initiatives. However, target PFASs also accounted for a smaller fraction of EOF in serum from more recent years, suggesting an increase in the relative contribution from some as-of-yet-identified PFASs. Finally, non-target time trend screening revealed 3 unidentified features which are suspected to be contaminants which co-occurred in the contaminated drinking water supply.

INTRODUCTION

Per- and polyfluoroalkyl substances (PFASs) are a family of synthetic compounds containing at least one fully fluorinated carbon atom in the alkyl chain.¹ PFASs have been used since the 1950s in a wide variety of applications (e.g. firefighting-foams, food-contact materials, textiles, cosmetics, etc.) due to their stability along with surfactant and surface protection properties.² In the early 2000s, however, concerns were raised about the toxicity, bioaccumulation, environmental occurrence and persistence of some perfluoroalkyl acids (PFAAs), in particular perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).² While production and use of PFOS and PFOA has been reduced,^{3,4} the over 4600 registered PFASs which exist on the global market⁵ has left questions regarding whether human and wildlife exposure to these chemicals is being underestimated.⁶ Moreover, recent organofluorine mass balance experiments have reported large quantities of unidentified extractable organofluorine (EOF) in human blood (15-67%) and wildlife (68-90%).⁷⁻⁹

Non-target or suspect-screening (collectively referred to herein as 'NTA') workflows offer the opportunity to elucidate novel PFASs which may account for unidentified organofluorine in samples. The application of NTA workflows within PFAS research have been reviewed recently.¹⁰ There are few examples of where NTA has been combined with organofluorine mass balance determination and only a single study¹¹ which applied NTA to elucidate novel PFASs in humans. In that work, a case-control design was used to identify novel features in the serum of firefighters from Australia. However, concentrations of PFOS and PFHxS ranged from 92–343 and 49–326 ng/mL in serum from firefighters, which is in some cases over 2 orders of magnitude higher than the general population. Identifying novel PFASs within the non-occupationally exposed population is considerably more challenging due to lower serum concentrations, which necessitates very low detection limits.

In the city of Uppsala, Sweden, residents in certain areas received drinking water (DW) contaminated with PFASs up until 2012, when the contamination was mitigated.¹² Perfluorohexane sulfonate (PFHxS) was the most prevalent PFAA in the contaminated well water (median 83 ng/L), followed by PFOS (median 47 ng/L), perfluorobutane sulfonate (PFBS; median 13 ng/L), and perfluorohexanoate (PFHxA; median 10 ng/L).¹³ Given the health-based guideline for drinking water issued by the Swedish Food Agency (< 90 ng/L based on the sum of 11 PFASs), these concentrations are clearly of concern.¹⁴ Through the POPUP study (Persistent Organic Pollutants in Uppsala Primiparas), PFAS contamination in DW has been linked to increased PFAS concentrations in the serum of both mothers and their children. However, given the number and diversity of PFASs, it remains unclear as to whether the full extent of exposure to PFASs has been elucidated.^{13,15,16}

The present study builds upon prior targeted temporal trend analyses carried out on the POPUP cohort (1996-2016)^{17,18} by applying a combined target/suspect screening strategy together with fluorine mass balance determination to samples from the entire cohort (1996–2017). To the best of our knowledge, this is the first study to combine fluorine mass balance and suspect screening in human samples. These new methodologies provide a means of comprehensively assessing exposure to known PFASs and and the effect of local drinking water clean-up initiatives. Moreover, this approach offers the possibility to identify novel contaminants not captured by traditional (targeted) methodologies.

MATERIALS AND METHODS

Target PFASs

Target PFASs included C4–C16 and C18 perfluoroalkyl carboxylic acids (PFCAs), C4–C11 perfluoroalkyl sulfonic acids (PFSAs), 32 perfluoroalkyl acid precursors/replacement PFASs (including (N-alkyl substituted) perfluorooctane sulphonamides/sulfonamidoalcohols/acetates, polyfluoroalkyl phosphate esters (PAPs), fluorotelomer sulfonates (FTSs), and fluorotelomer acids (FTAs), perfluoroalkyl ethers) and 8 branched isomers. A full list, including abreviations can be found in table S1 (SI). In cases where isomers are quantified, branched isomers are denoted as 'br-' and linear isomers as 'lin-'; in cases where multiple isomers are not reported, the measured target can be assumed to be linear. All standards and reagents were purchased from Wellington Laboratories.

Recruitment and sample preparation

In the POPUP study, first-time mothers (n = 622) from the general population living in Uppsala County were recruited between 1996 and 2017. All participants donated a blood sample 3 weeks after delivery. Blood sampling was done using 9 ml Vacutainer® or Vacuette® serum tubes and serum was stored at -20° C, at the Swedish Food Agency. For details about recruitment and blood sampling see Glynn *et al.*¹⁹ and Lignell *et al.*²⁰ The study was approved by the local ethics committee of Uppsala University, and the participating women gave informed consent prior to inclusion in the study.

For each year of recruitment, 1–3 pooled serum samples were prepared, with serum from 6–25 individual mothers in each pool (table 1). Three separate analyses were performed on each pooled serum sample: 1) targeted PFASs were measured in 0.5 mL serum using an acetonitrile (CAN) extraction followed by a newly developed UHPLC-Orbitrap MS method; 2) Extractable organofluorine (EOF) was determined in 0.5 mL portions of serum using the same ACN

extraction as for targeted analysis (minus internal standards) followed by analysis by combustion ion chromatography (CIC); 3) Total fluorine (TF) was determined in 150 μ L portions of serum which were analysed directly by CIC. Details of these methods are provided below.

Sample extraction

Each serum sample (0.5 mL) was transferred to a polypropylene vial and spiked with 50 μ L of internal standard mix. The aliquots were then extracted twice by adding 4 mL acetonitrile, mixing (Vortex-mix and ultra-sonic bath) and centrifuging. The supernatants were then transferred to a new vial and concentrated down to 1mL (under N₂-stream at 40°C, using a Turbovap LV). The extracts were cleaned with ~25 mg ENVI-Carb and 50 μ L glacial acetic acid, thorough Vortex-mix, centrifuge and transfer of 500 μ L supernatant to a new vial. Lastly, 50 μ L of recovery standard mix (M8PFOS and M8PFOA) and 200 μ L 4 mM NH₄OAc in H₂O were added prior to instrumental analysis.

Instrumental analysis

The extracts were analysed using a Dionex UltiMate 3000 Ultrahigh performance liquid chromatograph (Thermo Scientific) coupled to a Q Exactive HF hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) (detailed parameters are listed on table S2, SI). Separation of analytes was carried out using an injection volume of 5μ L into a BEH C18 column (2.1 × 50 mm, 1.7 µm particle size; Waters) with a guard column BEH C18 (2.1 × 5 mm, 1.7 µm; Waters). Besides an extra "isolator column" (2.1 × 50 mm; Waters) was mounted before the injector. All samples were run in negative ionisation, full scan mode (200–1200 Da) at a resolution of 120 000 full width at half maximum (fwhm) with data-dependant MS2 fragmentation using an inclusion list comprising 453 suspects from the NORMAN list plus 62 targeted compounds (50 of which authentic standards were available), 22 internal standards and 2 recovery standards (a full list of targets is provided in table S1, SI).

Targeted data processing was carried out using TraceFinder version 4.1 (Thermo Scientific version). A 9-point calibration curve was used to quantify the target PFASs. The lowest concentration calibration standard for which a well-shaped peak was observed was used as the limit of quantification (LOQ), with exception where a signal was observable in the blanks, in which case the LOQ was defined as the mean concentration detected in the blanks plus three times the standard deviation of the blanks.

Targeted method validation, intercomparison, and ongoing QC

Initial validation of the newly developed UHPLC-Orbitrap method was carried out using replicate (n = 4) spike/recovery experiments along with analysis of NIST certified reference

materials (n = 2). Thereafter, a method intercomparison was conducted whereby duplicate spiked samples and n = 20 individual (unspiked) human serum samples were processed by each of 3 methods: Method (A) involved an ACN extraction (described above) followed by analysis using the newly developed UHPLC-Orbitrap method. Method B utilized the same ACN extraction as in Method A, with analysis by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS; see SI for details). Finally, Method C utilized a previously reported solid phase extraction (SPE) procedure combined with UPLC-MS/MS analysis, and was designed for an expanded suite of PFASs, including polyfluoroalkyl phosphate diesters¹⁷ (see SI for details). Following method validation, time trend samples were processed together with extraction blanks (one per batch) and quality control (QC) samples (spiked and unspiked).

Fluorine mass balance

For measurement of extractable organofluorine (EOF), sample processing was the same as for targeted PFAS analysis (i.e. using 0.5 mL of serum) but was performed without addition of internal standards. Following extraction, samples were analysed using a Thermo-Mitsubishi combustion ion chromatograph (CIC), details of which can be found in Schultes *et al.*²¹ A brief overview is provided here. For EOF measurements, sample extracts (ca 200 µl) were placed in a ceramic sample boat containing glass wool. For TF measurements, 150 µL of serum was weighed directly into the sample boat. The samples were combusted at 1100°C under a flow of oxygen (400 l/min) and argon mixed with water vapor (200 l/min) for ~5 minutes. Combustion gases were collected in 10 mL water in an absorber unit (GA-210, Mitsubishi), after which an aliquot of the absorption solution (200 µl) was injected onto the IC (Dionex Integrion HPIC, Thermo Fisher Scientific) which was equipped with an anion exchange column (Dionex IonPac AS19 2 × 50 mm guard column and 2 × 250 mm analytical column, 7.5 µm particle size) operated at 30°C. The mobile phase (hydroxide) was ramped from 8 mM to 100 mM at a flow rate of 0.25 ml/min over the course of the run and measurement of fluorine was achieved by conductivity detection.

Samples for EOF analysis were prepared together with blanks and spiked samples (250 ng PFOS; n = 4). EOF concentrations were recovery-corrected based on PFOS recoveries (average 73%; see supporting information). For assessment of accuracy and precision of TF data, replicate certified reference material (BCR®-461, fluorine in clay) was analysed (94% recovery; RSD = 4.6%). For comparison to EOF and TF data, individual PFAS concentrations are converted to fluorine equivalents using equation 1.

Eqn 1. $C_{F_PFAS} = n_F \times MW_F / MW_{PFAS} \times C_{PFAS}$

Where C_{F_PFAS} (ng F/g) is the concentration of the PFAS of interest in equivalents of fluorine, n_F is the number of fluorine atoms on the molecule, MW_F is the weight of 1 mol of fluorine, MW_{PFAS} is the molecular weight of the PFAS of interest, and C_{PFAS} is the concentration of the PFAS determined using LC-MS/MS.

The total known extractable fluorine concentration (ΣC_{F_PFAS} ; ng F/g) was obtained by summing the fluorine concentrations from all individual PFASs. Thereafter, the concentration of unidentified, extractable organic fluorine ($C_{F_extr.unknown}$; ng F/g) was determined by subtracting ΣC_{F_PFAS} from the total extractable organic fluorine concentration (C_{F_EOF} ; ng F/g), according to equation 2.

Eqn 2. $C_{F_EOF} = \Sigma C_{F_PFAS} + C_{F_extr.unknown}$

The TF concentration (C_{F_TF} ; ng F/g) is the sum of C_{F_EOF} and the total non-extractable fluorine concentration ($C_{F_non\ extr.}$; ng F/g), as shown in equation 3.

Eqn 3. $C_{F_TF} = C_{F_EOF} + C_{F_non \ extr.}$

Time trends of target PFAS, EOF, and TF

PFAS levels below LOQ were substituted with LOQ/ $\sqrt{2}$. Time trends for EOF were only evaluated using samples containing EOF above the detection limit since substituting with LOQ or LOQ/ $\sqrt{2}$ could lead to artificial gaps between sum PFAS and EOF concentrations. While it has been pointed out that removing data below LOQ can lead to positive bias²², this was mitigated by focusing on the percentage of known EOF (rather than the absolute EOF), and the fact that samples with detectable EOF were not just present at early or late time points (i.e. they occurred throughout the study period). To test for significant changes in concentrations from 1997-2017, log-linear regression analyses were carried out. An approach adapted from Sturludottir et al.²³ was used for change-point (CP) analysis. Prior to CP analysis, the data were screened for outliers. Concentrations with a residual from a regression line covering the entire time period were excluded if the residual exceeded 3 times the interquartile range (IQR) of all the residuals. This is a conservative approach and only a few observations were excluded from the CP test. To detect the CP, the entire time-series was repeatedly divided into two parts with at least three years in each part and log-linear regression lines were fitted to each part and the residual variance was recorded for each combination. The combination of regression lines that gained the smallest variance was compared with a log-linear regression line for the entire study period and the mean for the whole time period with F-tests. The degrees of freedom were reduced to compensate for the less constrained situation of two regression lines compared to a single regression line. Only a single change-point was determined for each substance because the time-series were generally too short for several change-points. The median concentration for the tested change-point year was included in both parts of the time series. This is a conservative approach which reduces the influence of abrupt changes from one year to the next but may also reduce the chance to detect significant trends on either side of the change-point. The two parts may not necessarily point in different directions (i.e. increasingdecreasing) and may not show significant slopes separately (only significant regressions lines were plotted) but they still show a significant decrease in residual variance, i.e. they explain significantly more of the variation in contaminant concentration than the mean or a regression line for the entire period. For time series without a significant CP, log-linear regression was carried out.

Suspect Screening

Suspect screening was carried out using Compound Discoverer (CD) 3.0 (Thermo Scientific). Software parameters are listed in table S3 (SI). CD handles peak alignment, peak picking, blank subtraction and comparison with databases (suspect list of exact masses and mzCloud). For the peaks matching a molecular mass in the suspect list (within 5 ppm), the MS2 spectra were further inspected. The correspondence of the MS2 data from CD with the suspect compound was assessed in silico with both Sirius and MetFrag.^{24,25}

Non-target time trend screening

We previously utilized increasing time trends as a prioritization strategy to identify emerging bioaccumulative contaminants in human whole blood.^{6,26} In the present work, we postulated that unknown substances co-occurring with PFHxS in the contaminated drinking water supply may mimic the time trends of PFHxS. Therefore, we prioritized features with time trends that matched PFHxS (i.e. increasing until 2010 then decreasing) in our non-target data using Spearman rank correlation for all features against PFHxS.

RESULTS AND DISCUSSION

Quality Control and Method Validation

Blank concentrations were typically below LOQ for most targets and were not subtracted from samples. Method accuracy and precision (assessed through replicate spike/recovery experiments) were excellent for most compounds, with mean percent recoveries typically ranging between 70 and 130%. The exceptions were for FOSAA, 6:2/8:2 diPAP, 10:2 diPAP, and 3:3, 5:3 and 7:3 FTAs, which all displayed lower average recoveries (21-63%) and PFBA, PFTriDA, PFTeDA PFHxDA, PFOcDA, which displayed higher recoveries (147–154%; (table S4, SI). The sub-optimal performance for these targets is likely due to the absence of exactly-matched, isotopically-labelled internal standards. Nevertheless, precision remained excellent for these substances, as seen in table S4 (SI), and therefore they were included in the analysis of temporal trends. Measurements of NIST CRM 1957 revealed good consistency with certified concentrations and previous studies^{17,27} (table S5, SI). Furthermore, deviation from the

values in Gebbink *et al.* were mostly under 13%, with the exception of PFDoDA (43%), PFTriDA (38%) and FOSA (88%), like due to the very low concentrations of these substances in the NIST material. Overall these data indicate good performance of the method. Finally, evaluation of matrix effects revealed some ionisation suppression, with average internal standard recoveries between 59 and 92%, with the exception of M4PFBA ($5.9 \pm 1.8\%$), M3PFPeA ($19 \pm 4.2\%$) and M2PFHxA ($35 \pm 13\%$; table S4, SI).

Method intercomparison

A comparison of data generated using the newly developed UHPLC-Orbitrap method (i.e. method A) with two existing methodologies (methods B and C; both involving a triple quadrupole mass spectrometer), used in Glynn *et al.* 2015²⁸ and Gyllenhammar *et al.* 2017¹² revealed consistent percent recoveries for spiked duplicates for targets which were included in all 3 methods (table S6, SI). The exceptions were fluorotelomer sulfonates, which displayed better overall recoveries and repeatability using the Orbitrap method, and PFBA, which was over-reported using previous methods B and C (albeit, over-reporting of PFBA was also noted during our initial Oribtrap method validation; see table S3, SI). In contrast, determination of monoPAPs was not possible using the Orbitrap method due to the necessity of an ion pairing agent in the mobile phase which was only used in method C. A comparison of n = 20 unspiked serum samples using all three methods demonstrated strong correlation coefficients between each method (r² typically greater than 0.9 for substances detected by all three methods) further demonstrating consistency among methods. In general, the biggest performance differences among methods were observed for low-abundance substances (e.g. PFHpA, br-PFOA, PFBS, etc.), which were more consistently detected by the Oribtrap method, due to lower LOQs (typically an order of magnitude lower; see table S7, SI).

Target PFAS profiles

Across all samples, concentrations were below LOQ for PFPeA, PFDoDA, PFTeDA, PFHxDA, PFOcDA, MeFOSA, 11Cl-PF3OUdS, NaDONA, HFPO-DA, 3:3 FTA (FPrPA), 5:3 FTA (FPePA), 7:3 FTA (FHpPA), 4:2 FTS, 6:2/8:2 diPAP, 8:2 diPAP and 10:2 diPAP. L-PFDS, L-FOSA, L-EtFOSA, L-EtFOSE, 9-Cl-PF3ONS, and 6:2 diPAP were detected intermittently (i.e. \leq 10% of all samples) and were therefore not investigated further. The remaining targets were detected in >30% of samples.

Sum (Σ) PFAS concentrations ranged from 8.0 (2017) – 32 ng/g (1999) and were dominated by PFOS, PFOA, and PFHxS over the entire study period (Figure 1). Considerable changes were observed in the relative profile of these 3 PFASs over the study period. For example, from 1996-2002, profiles were dominated by PFOS, followed by PFOA and PFHxS. After 2002, a concomitant increase in PFHxS and decrease in PFOS led to approximately equal concentrations of these homologues by 2010. After 2010, PFHxS and PFHxS and PFOS concentrations remained approximately equivalent with the remaining ~15-30% of

the profile made up of PFOA and longer-chain PFCAs. Notably, the PFOS-precursors FOSAA, MeFOSAA, and EtFOSAA were clearly observable from 1996-2002; thereafter the occurrence of these substances declined rapidly and they were generally not observable after 2010 (tables S8–10, SI).

Target PFAS time trends

Among the PFSAs, statistically significant (i.e. p < 0.05) upwards-downwards trends were observed for PFBS, lin-PFHxS, br-PFHxS, br-PFOS, and lin-PFOS, with change-points occurring in 2007, 2010, 2011, 2001, and 2001, respectively (figure and table 2). The increasing PFBS and PFHxS trends at the beginning of the study period likely reflect increased PFAS contamination of the DW supply, originating from extensive use of aqueous film forming foams (AFFF) in certain areas of Uppsala.¹³ The PFAS contamination of the DW production wells was mitigated in 2012, but already in 2007 the DW distribution system of Uppsala was changed resulting in lower average PFBS and PFHxS concentrations in the areas that had previously received a high proportion of the contaminated drinking water.¹³ This change in DW distribution in Uppsala corresponds to the CP of PFBS (in 2007), br-PFHxS (in 2010) and lin-PFHxS (in 2011). The slightly earlier change-point for branched isomers is likely due to their faster blood elimination kinetics.¹³ For PFBS, the earlier CP (relative to PFHxS) is more difficult to explain because PFBS is the most mobile and least biopersistent perfluoroalkyl sulfonic acid investigated here (serum elimination half-life of 25.8 days for PFBS vs 1751 days for PFHxS and 2662 days for PFOS),^{29,30} and its concentration in human serum is expected to respond more quickly to changes in exposure levels than PFHxS (change-point 2010–11). The mitigation of PFAS contamination of the DW in 2012 explains the further decrease in PFBS and PFHxS towards the end of the study period (figure 2). In contrast, the PFOS CP in 2001 likely reflects the phase-out of perfluorooctane sulfonyl fluoride-based substances in the early 2000s, which is also reflected in the rapid decline of PFOS precursors (FOSAA, MeFOSAA, and EtFOSAA) throughout the study period (average declines of 6.5-28% per year). Interestingly, the change-point for PFOS observed in this study is considerably later than that observed in human milk from Stockholm (1988), assessed between 1972 and 2016,³¹ most likely due to the additional PFOS exposure from DW in Uppsala.¹³

Among the PFCAs for which temporal trend analysis was performed, all but PFHxA and br-PFOA (which both declined throughout the study period) displayed statistically significant upwardsdownwards trends (figure 2). CPs occurred in the years 2000 (PFBA), 2002 (PFOA), 2004 (PFHpA, PFDA), 2007 (PFNA), 2008 (PFUnDA), and 2009 (PFTriDA) (figure 2 and table 2). The declining trends in PFOA from 2002 and earlier are consistent with those of PFOS and likely also reflect the 2002 3M phase-out, when production of ECF PFOA (the source of branched PFOA isomers) was halted, and eventually replaced by telomerised (i.e. strictly linear) PFOA.³² The PFOA Stewardship Program, initiated in 2006, may have also contributed to the observed decline.³³ The trends and CP for PFOA observed here also coincide with those observed for PFOA in human milk sampled from 1972–2016 in Stockholm (CP = 2000).³¹ The change point for C9, C11, C13 PFCAs (i.e. beginning 2007-2009) also indicates that exposure sources of these PFCAs have been restricted, but the delay relative to PFOA suggests that regulation of these substances occurred later than PFOA. Notably, Land et al. reviewed PFAS temporal trend data published up until 2015 and concluded that there was no evidence for significant declining trends in PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA and PFTeDA in human sample at any global location.³⁴ In the trend study on human milk from Stockholm, PFDA and PFTriDA did not display a change-point; instead these substances increased throughout the study period, while PFUnDA showed a CP in 1984, albeit with non-significant trends before and after this time. As mentioned before, differences in study design and sampling frequency may contribute to discrepancies between studies. The CP for PFNA in the present study (2007) is fairly consistent with that in human milk (2010).

Finally, both 6:2 and 8:2 FTS displayed CPs in 2004 (upwards-downwards), but only 8:2 FTS was statistically significant. Over the entire time period, statistically significant declines were observed for both substances, at a rate of 8 and 9.6% per year, respectively. Few data are available on FTS temporal trends but a recent report highlighted the widespread occurrence of FTSs in the Nordic environment, including sediment, groundwater, indoor dust and biota.³⁵ FTSs generally occur at low concentrations with the exception of samples collected close to sites contaminated with AFFF. To the best of our knowledge, FTSs have not been reported previously in human serum from the Nordics; however, serum collected in 2009 from 50 individuals from the US contained 8:2 FTS at concentrations ranging from <0.005–0.231 ng/mL (detection in >95% of samples) and 6:2 FTS at concentrations ranging from <0.005–0.047 ng/mL (detection in >54% of samples).³⁶ Sources of exposure to FTSs are thought to include commercial products containing FTSs (e.g. AFFF) or fluorotelomer mercaptoalkyl phosphate diester (e.g. food packaging).³⁶

Fluorine mass balance

EOF was above method detection limits (25 ng F/g serum) in only 33% of samples, hampering comparisons to TF and ΣC_{F_PFAS} for the entire time period. Nevertheless, some observations could be made by focusing on samples with detectable levels of EOF. Among these samples, the proportion of EOF explained by target PFASs ranged from 11–75%. Significant trends were not observed for EOF, despite the fact that significant declining trends in TF and ΣC_{F_PFAS} were observed (3.2% and 5.4%/year, respectively; (figure 3 and table 2). The lack of a trend in EOF and the declining trends in ΣC_{F_PFAS} resulted in a decline of 3.9% per year in the percentage of EOF explained by target PFASs over the study period (p = 0.025). This implies that samples collected in more recent years have a larger fraction of unknown EOF compared to older samples. The percentage of TF accounted for by EOF also increased significantly (2.2%/year) indicating that, collectively, known and unknown PFAS make up a larger percentage of TF in more recent years. Overall these findings corroborate observations in human plasma

from Münster, Germany, which also showed an increasing proportion of unidentified organofluorine in samples collected after the year 2000.⁹

Suspect screening

A total of 5 exact masses not included the our target list matched substances in our database within 5 ppm mass error. However, inspection of MS2 data for these features ruled out all five tentative assignments. This result was not completely surprising, given the overall low PFAS concentrations in this population. Despite the absence of a positive identification, it is germane to note that NTA data is amenable to retrospective mining. As PFAS databases are further developed, the present dataset can be re-processed without re-analysing any samples. The cost-and time-savings associated with retrospective mining (as opposed to sample re-analysis) represents a considerable advantage for NTA-based workflows.

Non-target time trend screening

Using prioritization strategy A, four targets (PFBS, PFNA, PFDA and PFTriDA) and three unidentified features (neutral masses 422.2307, 396.2066, and 436.3554) displayed time trends matching that of PFHxS (Spearman's rho > 0.5; table 3). Unfortunately, MS2 data were not collected for the unidentified features, precluding structural elucidation of these substances. Nevertheless, it is notable that feature A2 (neutral mass 396.2066) displayed a chlorine isotope pattern. Previously Rotander *et al.* reported Cl-PFHxS in Australian firefighters who were exposed to AFFF, but the exact mass of Cl-PFHxS did not match that of feature A2.¹¹ While we cannot confirm that any of the unidentified features were fluorinated, the consistency of their time trends to PFHxS is notable, and warrants further investigation.

ACKNOWLEDGEMENT

The Swedish EPA (Environmental Protection Agency) is acknowledged for financial support. Appreciation is expressed to the participating women and to the midwives who assisted in recruitment, interviewing, and sampling. Ellen Edgren and Jane Karlsdotter are appreciated for technical assistance.

REFERENCES

- R. C. Buck, J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. de Voogt, A. A. Jensen, K. Kannan, S. A. Mabury and S. P. J. van Leeuwen, *Integr. Environ. Assess. Manag.*, 2011, 7, 513–541. DOI: 10.1002/ieam.258.
- A. Ritscher, Z. Wang, M. Scheringer, J. M. Boucher, L. Ahrens, U. Berger, S. Bintein, S. K. Bopp, D. Borg, A. M. Buser, I. Cousins, J. DeWitt, T. Fletcher, C. Green, D. Herzke, C. Higgins, J. Huang, H. Hung, T. Knepper, C. S. Lau, E. Leinala, A. B. Lindstrom, J. Liu, M. Miller, K. Ohno, N. Perkola, Y. Shi, L. Småstuen Haug, X. Trier, S. Valsecchi, K. van der Jagt and L. Vierke, *Environ. Health Perspect.*, 2018, 126, 84502. DOI: 10.1289/EHP4158.
- 3 Stockholm Convention, Stockholm Convention: Protecting human health and the environment from persistent organic pollutants, http://chm.pops.int/Home/tabid/2121/Default.aspx, (accessed 13 September 2018).
- G. W. Olsen, D. C. Mair, C. C. Lange, L. M. Harrington, T. R. Church, C. L. Goldberg, R. M. Herron, H. Hanna, J. B. Nobiletti, J. A. Rios, W. K. Reagen and C. A. Ley, *Environ. Res.*, 2017, 157, 87–95. DOI: 10.1016/j.envres.2017.05.013.
- 5 OECD (Organisation for Economic Co-operation and Development), *Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs): Summary Report On Updating the OECD 2007 List of Per- and Polyfluoroalkyl Substances (PFASs)*, Paris, 2018 URL: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en (accessed 26 October 2019).
- 6 M. M. Plassmann, S. Fischer and J. P. Benskin, *Environ. Sci. Technol. Lett.*, 2018, **5**, 335–340. DOI: 10.1021/acs.estlett.8b00196.
- 7 L. W. Y. Yeung, Y. Miyake, S. Taniyasu, Y. Wang, H. Yu, M. K. So, G. Jiang, Y. Wu, J. Li, J. P. Giesy, N. Yamashita and P. K. S. Lam, *Environ. Sci. Technol.*, 2008, **42**, 8140–8145. DOI: 10.1021/es800631n.
- 8 Y. Miyake, N. Yamashita, M. K. So, P. Rostkowski, S. Taniyasu, P. K. S. Lam and K. Kannan, *J. Chromatogr. A*, 2007, **1154**, 214–221. DOI: 10.1016/j.chroma.2007.03.084.
- 9 L. W. Y. Yeung and S. A. Mabury, *Environ. Chem.*, 2016, **13**, 102–110. DOI: 10.1071/EN15041.
- 10 Y. Liu, L. A. D'Agostino, G. Qu, G. Jiang and J. W. Martin, *TrAC Trends Anal. Chem.*, , DOI:10.1016/j.trac.2019.02.021 DOI: 10.1016/j.trac.2019.02.021.
- 11 A. Rotander, A. Kärrman, L.-M. L. Toms, M. Kay, J. F. Mueller and M. J. Gómez Ramos, *Environ. Sci. Technol.*, 2015, **49**, 2434–2442. DOI: 10.1021/es503653n.
- 12 I. Gyllenhammar, A. Glynn, J. Benskin, O. Sandblom, A. Bignert and S. Lignell, *Temporal trends of poly- and perfluoroalkyl substances (PFASs) in pooled serum samples from first-time mothers in Uppsala 1997-2016*, Livsmedelsverket, Uppsala, 2017 URL: http://www.diva-portal.se/smash/get/diva2:1155235/FULLTEXT01.pdf.
- I. Gyllenhammar, U. Berger, M. Sundström, P. McCleaf, K. Eurén, S. Eriksson, S. Ahlgren, S. Lignell, M. Aune, N. Kotova and A. Glynn, *Environ. Res.*, 2015, 140, 673–683. DOI: 10.1016/j.envres.2015.05.019.
- 14 Livsmedelsverket, PFAS in drinking water and fish risk management, https://www.livsmedelsverket.se/en/food-and-content/oonskade-amnen/miljogifter/pfas-in-drinkingwater-fish-risk-management, (accessed 20 September 2018).
- 15 I. Gyllenhammar, J. P. Benskin, O. Sandblom, U. Berger, L. Ahrens, S. Lignell, K. Wiberg and A. Glynn, *Environ. Sci. Technol.*, 2019, **53**, 11447–11457. DOI: 10.1021/acs.est.9b01746.
- 16 I. Gyllenhammar, J. P. Benskin, O. Sandblom, U. Berger, L. Ahrens, S. Lignell, K. Wiberg and A. Glynn, *Environ. Sci. Technol.*, 2018, **52**, 7101–7110. DOI: 10.1021/acs.est.8b00770.
- W. A. Gebbink, A. Glynn and U. Berger, *Environ. Pollut.*, 2015, 199, 166–173. DOI: 10.1016/j.envpol.2015.01.024.
- 18 A. Glynn, U. Berger, A. Bignert, S. Ullah, M. Aune, S. Lignell and P. O. Darnerud, *Environ. Sci. Technol.*, 2012, 46, 9071–9079. DOI: 10.1021/es301168c.
- 19 A. Glynn, M. Aune, P. O. Darnerud, S. Cnattingius, R. Bjerselius, W. Becker and S. Lignell, *Environ. Heal.*, 2007, **6**, 2. DOI: 10.1186/1476-069X-6-2.
- 20 S. Lignell, M. Aune, P. O. Darnerud, S. Cnattingius and A. Glynn, *Environ. Res.*, 2009, 109, 760–767. DOI: 10.1016/j.envres.2009.04.011.
- 21 L. Schultes, R. Vestergren, K. Volkova, E. Westberg, T. Jacobson and J. P. Benskin, *Environ. Sci. Process. Impacts*, 2018, **20**, 1680–1690. DOI: 10.1039/C8EM00368H.
- 22 R. A. Hites, *Environ. Sci. Technol.*, 2019, **53**, 11059–11060. DOI: 10.1021/acs.est.9b05042.
- 23 E. Sturludóttir, H. Gunnlaugsdottir, O. K. Nielsen and G. Stefansson, *Commun. Stat. Simul. Comput.*, 2017, **46**, 5808–5818. DOI: 10.1080/03610918.2014.1002849.
- 24 K. Dührkop and S. Böcker, 'Fragmentation Trees Reloaded BT Research in Computational Molecular Biology', ed. T. M. Przytycka, Springer International Publishing, Cham, 2015, pp. 65–79.

- 25 C. Ruttkies, E. L. Schymanski, S. Wolf, J. Hollender and S. Neumann, *J. Cheminform.*, 2016, **8**, 3. DOI: 10.1186/s13321-016-0115-9.
- 26 M. M. Plassmann, E. Tengstrand, K. M. Åberg and J. P. Benskin, *Anal. Bioanal. Chem.*, 2016, **408**, 4203–4208. DOI: 10.1007/s00216-016-9563-3.
- 27 L. W. Y. Yeung, S. J. Robinson, J. Koschorreck and S. A. Mabury, *Environ. Sci. Technol.*, 2013, 47, 3865–3874. DOI: 10.1021/es303716k.
- 28 A. Glynn, J. P. Benskin, I. Gyllenhammar, M. Aune, T. Cantillana and O. Sandblom, *Temporal trends of perfluoroalkyl substances (PFAS) in individual serum samples from first-time mothers in Uppsala 1996-2014*, Livsmedelsverket, Uppsala, 2015 URL: www.diva-portal.org/smash/get/diva2:856854/FULLTEXT01.pdf.
- 29 G. W. Olsen, S.-C. Chang, P. E. Noker, G. S. Gorman, D. J. Ehresman, P. H. Lieder and J. L. Butenhoff, *Toxicology*, 2009, 256, 65–74. DOI: 10.1016/j.tox.2008.11.008.
- 30 G. W. Olsen, J. M. Burris, D. J. Ehresman, J. W. Froehlich, A. M. Seacat, J. L. Butenhoff and L. R. Zobel, *Environ. Health Perspect.*, 2007, **115**, 1298–1305. DOI: 10.1289/ehp.10009.
- 31 E. Nyberg, R. Awad, A. Bignert, C. Ek, G. Sallsten and J. P. Benskin, *Environ. Sci. Process. Impacts*, 2018, **20**, 1136–1147. DOI: 10.1039/C8EM00174J.
- 32 J. P. Benskin, A. O. De Silva and J. W. Martin, 'Isomer Profiling of Perfluorinated Substances as a Tool for Source Tracking: A Review of Early Findings and Future Applications', in *Reviews of Environmental Contamination and Toxicology Volume 208: Perfluorinated alkylated substances*, ed. P. De Voogt, Springer New York, New York, NY, 2010, pp. 111–160. DOI: 10.1007/978-1-4419-6880-7 2.
- 33 United States Environmental Protection Agency (EPA), Fact Sheet: 2010/2015 PFOA Stewardship Program, https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoastewardship-program.
- 34 M. Land, C. A. de Wit, A. Bignert, I. T. Cousins, D. Herzke, J. H. Johansson and J. W. Martin, *Environ. Evid.*, 2018, 7, 4. DOI: 10.1186/s13750-017-0114-y.
- 35 S. Posner, S. Roos, P. Brunn Poulsen, H. Ólína Jörundsdottir, H. Gunnlaugsdóttir, D. Xenia Trier, A. Astrup Jensen, A. A. Katsogiannis, D. Herzke, E. Cecilie Bonefeld-Jörgensen, C. Jönsson, G. Alsing Pedersen, M. Ghisari and S. Jensen, *Per- and polyfluorinated substances in the Nordic Countries : Use, occurence and toxicology*, Nordic Council of Ministers, Copenhagen, 2013 DOI: 10.6027/TN2013-542.
- 36 H. Lee and S. A. Mabury, *Environ. Sci. Technol.*, 2011, **45**, 8067–8074. DOI: 10.1021/es200167q.

Figure 1. Average sum PFAS concentrations measured for each year in pooled human serum for PFASs detected in >30% of all samples. Concentrations below LOQs were replaced with 0.

Figure 2. Temporal trends of individual PFAS (in units of ng F/g blood serum). Curves represent significant (p < 0.05) log-linear (red), and change-point (green) trends.

Figure 3. Temporal trends of EOF, TF, and ∑PFAS (in units of ng F/g blood serum) as well as % EOF
accounted for by ∑PFAS, % of TF accounted for by ∑PFAS, and % of TF accounted for by EOF.
Curves represent significant (p < 0.05) log-linear (red), and change-point (green) trends.

Sampling year	Na	No of pools	N in each pool	Age (yrs) ^b
	IN.,			mean (range)
1996	19	3	6-7	30 (21-41)
1997	62	3	20-21	28 (21-37)
1998	74	3	24-25	29 (21-35)
1999	17	3	5-6	27 (21-31)
2000	20	2	10	30 (21-37)
2001	9	1	9	29 (22-35)
2002	31	3	10-11	30 (24-37)
2004	32	3	10-11	29 (20-34)
2006	30	3	10	30 (19-40)
2007	29	3	9-10	30 (21-39)
2008	30	3	10	29 (20-35)
2009	30	3	10	29 (22-39)
2010	30	3	10	30 (20-41)
2011	29	3	9-10	30 (21-38)
2012	30	3	10	29 (21-38)
2013	30	3	10	29 (22-39)
2014	30	3	10	30 (20-38)
2015	30	3	10	30 (22-38)
2016	30	3	10	30 (24-36)
2017	30	3	10	29 (21-34)

Table 1. Composition of the pooled serum samples used in the present study.

^aTotal number of serum samples from the specific sampling year. ^bMean age of the women donating blood during the specific sampling year.

18 **Table 2.** Summary of time trend analysis. N_{tot} and Yrs indicates the number of samples and number of years, respectively, used in the time trend analysis; Year

19 refers to the range of years included; Trend (%) refers to the annual percent change in concentrations identified from the log-linear regression; 95% C.I. refs to

20 the 95% confidence interval of the trend; P(LR) is the p-value associated with the linear regression; YRQ: years required to detect an annual change of 10%

with a power of 80%; LDT: lowest detectable trend (% per year) for a 10 years period with the current between-year variation at a power of 80%; CP refers to the year of the change point; P(CP) refers to the P-value of the change point.

				Log-linear regression statistics		C	Change-point	statistics		
Target	N _{tot}	Yrs	Year	Trend (%)	95% C.I.	P(LR)	YRQ	LDT	СР	P(CP)
PFBA	56	20	96-17	-3.8	(-9.6,2.4)	0.3916	35	50	2000	0.0381
PFHxA	57	20	96-17	-2	(-3.6,39)	0.0498	15	10	2000	0.4985
PFHpA	57	20	96-17	-5.2	(-6.4,-3.9)	< 0.0001	13	7,9	2004	0.0077
PFOA	57	20	96-17	-4.9	(-5.6,-4.1)	< 0.0001	9	4,4	2002	0.0002
PFOA-br	57	20	96-17	-12	(-13,-11)	< 0.0001	15	9,8	2011	0.0537
PFNA	57	20	96-17	1.7	(.75,2.7)	0.0193	10	5,4	2007	< 0.0001
PFDA	57	20	96-17	3	(1.9,4.1)	0.0009	11	6,3	2004	0.0001
PFUnDA	57	20	96-17	2.4	(1.5,3.4)	0.0005	11	5,5	2008	0.0011
PFTriDA	57	20	96-17	0.16	(-2.0,2.3)	1	18	13	2009	< 0.0001
PFBS	56	20	96-17	-0.57	(-2.3,1.2)	0.6718	16	11	2007	0.0005
PFHxS	57	20	96-17	3.6	(2.2,5.1)	0.0017	13	8,2	2011	0.0001
PFHxS-br	57	20	96-17	1.9	(08,3.9)	0.2375	17	12	2010	< 0.0001
PFOS	57	20	96-17	-8.4	(-9.0,-7.8)	< 0.0001	9	3,9	2001	< 0.0001
PFOS-br	57	20	96-17	-9	(-9.8,-8.3)	< 0.0001	10	4,8	2001	< 0.0001
FOSAA	57	20	96-17	-6.5	(-7.5,-5.4)	< 0.0001	12	6,4	2004	< 0.0001
FOSAA-br	57	20	96-17	-27	(-30,-23)	< 0.0001	31	37	2007	0.0017
EtFOSA	57	20	96-17	-16	(-18,-15)	< 0.0001	17	13	2009	0.0279
MeFOSAA	57	20	96-17	-28	(-30,-26)	< 0.0001	22	19	2011	0.0001
EtFOSAA	57	20	96-17	-8	(-12,-4.2)	0.0041	27	28	2004	0.1034
6:2 FTS	57	20	96-17	-9.6	(-12,-6.9)	0.0005	22	19	2004	< 0.0001
8:2 FTS	56	20	96-17	-3.8	(-9.6,2.4)	0.3916	35	50	2000	0.0381
EOF	19	12	96-16	-0.86	(-3.4,1.7)	0.5261	19	17	2004	0.6944
TF	57	20	96-17	-3.2	(-4.5,-1.8)	0.0033	13	8,3	2008	0.6517
PFAS	57	20	96-17	-5.4	(-6.0,-4.8)	< 0.0001	8	3,7	2001	0.0001
% EOF explained by PFAS	19	12	96-16	-3.9	(-6.7,-1.1)	0.0252	21	19	2000	0.1585
% TF explained by PFAS	57	20	96-17	-2.3	(-3.8,70)	0.0409	15	9,7	2009	0.1148

- 24 Table 3. Features selected matching the trend of PFHxS. Table includes feature identification number
- 25 (ID), exact mass of the neutral species, spearman's rho (ρ), retention time (RT; min), and a comment
- regarding the identity of the feature and/or elements of the mass spectra which provide clues to the identity of the feature.
 - Trend matching PFHxS (ρ>0.5) Exact mass RT ID ρ Comment (min) (neutral) A1 422.2307 0.63 3.84 Cl isotope 0.58 7.16 A2 396.2066 pattern A3 436.3554 0.56 9.60 463.9702 A4 0.65 5.54 PFNA A5 299.9503 0.65 3.76 PFBS A6 663.9577 0.61 7.27 PFTriDA A7 513.9667 0.54 6.00 PFDA

Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFASs), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996-2017

SUPPORTING INFORMATION

Luc T. Miaz,*^a Merle M. Plassmann,^a Irina Gyllenhammer,^b Anders Bignert,^c Oskar Sandblom,^a Sanna Lignell,^b Anders Glynn^{b, d} and Jonathan P. Benskin*^a

a. Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, Sweden

b. Department of Risk and Benefit Assessment, National Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden

c. Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden

d. Department of Biomedical Sciences and Veterinary Public Health, Swedish University of

Agricultural Sciences (SLU), Box 7050, SE-750 07, Uppsala, Sweden

*Corresponding authors: Luc@Miaz.ch, Jon.Benskin@aces.su.se

Targeted method validation, intercomparison, and ongoing QC

Method B

Extraction and clean up

0.5 g serum was pre-weighed into a 13 mL PP-centrifuge tube. The serum sample was then spiked with a mixture of isotopically labeled standards (50 μ L at 10 pg/ μ L) in MeOH. A volume of 4 mL of ACN was added and the sample was subsequently vortex mixed for 30 seconds. The sample was ultrasonicated for 15 minutes at room temperature and then centrifuged for 10 min at 3000 rpm. The supernatant was transferred into a new 13 mL PP-tube. The extraction procedure was repeated with 4 mL acetonitrile and the combined extracts were concentrated to 1 mL using a TurboVap evaporator (Biotage).

Cleanup of the extract was carried out using 25 mg ENVI-Carb and 50 μ l glacial acetic acid in an eppendorf tube. The concentrated extracts were transferred to the eppendorf tubes and vortex-mixed thoroughly for 30 seconds and then centrifuged at 10000 rpm for 10 min. 500 μ L was transferred to a clean eppendorf tube. 50 μ l recovery standard (${}^{13}C_8$ -PFOS and ${}^{13}C_8$ -PFOA at 10 pg/ μ l) was added together with 200 μ l 4 mM NH₄OAc in water. 200 μ L was transferred to a 300 μ l autosampler vial (PP) for instrumental analysis.

Instrumental analysis

All extracts were analyzed by ultra-performance liquid chromatography coupled to tandem mass spectrometer (UPLC/MS/MS). The UPLC was an Acquity UPLC system (Waters) equipped with a BEH C18 (1.7 μ m particles, 50 × 2.1 mm) analytical separation column (Waters). A volume of 5 μ L extract was injected in the partial loop injection mode. Mobile phase A consisted of 90% water and 10% acetonitrile with 2 mM ammonium acetate while Mobile phase B consisted of 99% acetonitrile and 1% water with 2 mM ammonium acetate. A gradient elution with a flow rate of 0.4 mL/min was applied. The initial conditions were 90% of solvent (A) and 10% of solvent (B). The percentage of B was linearly increased to 100% from injection to 5 min and held at 100% B until 7.5 min. Initial conditions at 90% A 10% B were regained at 8 min and held until 10 min for column equilibration. The detection system was a Xevo-TQS triple quadrupole mass spectrometer (Waters), operated in negative electrospray ionization (ESI) mode. The following instrumental parameters were used: Capillary voltage 1.0 kV, source temperature 150°C, desolvation temperature 350°C, desolvation gas flow 650 L/h and cone gas flow 150 L/h. The mass spectrometer was operated in multiple reaction monitoring mode (MRM).

Method C

Extraction and clean up

0.5 g serum was pre-weighed into a 13 mL PP-centrifuge tube. The serum sample was then spiked with a mixture of isotopically labeled standards (50 μ L at 10 pg/ μ L) in MeOH. A volume of 3 mL of AcN was added and the sample was subsequently vortex mixed for 30 seconds. The sample was ultrasonicated for 15 minutes at room temperature and then centrifuged for 10 min at 3000 rpm. The supernatant was transferred into a new 13 mL PP-tube. The extraction procedure was repeated with 3 mL acetonitrile and the combined extracts were concentrated to 1 mL using a TurboVap evaporator (Biotage). 9 mL of HPLC grade water was added. The extract was vortex mixed thoroughly.

For extract cleanup, an OASIS WAX SPE column (6 cc, 150 mg sorbent, 30 μ m particles) (Waters, Milford, USA) was washed and conditioned with 6 ml 1% ammonium hydroxide solution in methanol, 6 ml methanol, and 6 ml water. The sample extract was ultrasonicated for 5 min before loading onto the SPE column. The column was then washed with 1 mL 2% formic acid in HPLC grade water and then with 2 mL of HPLC grade water (discarded). The column was allowed to run dry. The target compounds were eluted stepwise, first with 1 mL MeOH (Fraction 1, containing the neutral targets) and then washed with 2 mL MeOH (discarded). Then with 4 mL 1% NH₄OH in MeOH (Fraction 2, containing the ionic targets). 150 μ l of Fraction 1 was transferred 300 μ l autosampler vial (PP) and 50 μ l recovery standards ($^{13}C_8$ -PFOS and $^{13}C_8$ -PFOA at 10 pg/ μ l) was added. Fraction 2 was evaporated to near dryness and resolved in 150 μ L MeOH and 50 μ l recovery standard ($^{13}C_8$ -PFOS and $^{13}C_8$ -PFOA at 10 pg/ μ l) was added. The final extract was vortex mixed and ultrasonicated for 5 minutes and then transferred to a 300 μ l autosampler vial (PP) for instrumental analysis.

Instrumental analysis

All extracts were analyzed by ultra-performance liquid chromatography coupled to tandem mass spectrometer (UPLC/MS/MS). The UPLC instrumentation was an Acquity UPLC system (Waters) with a BEH C18 (1.7 μ m particles, 50 × 2.1 mm) analytical separation column (Waters). A volume of 5 μ L extract was injected in the partial loop injection mode. The mobile phases used had the composition; Mobile phase A 95% water and 5% acetonitrile with 2 mM ammonium acetate and 5 mM methyl piperidine (1-MP) and Mobile phase B 75% methanol, 20% acetonitrile and 5% water with 2 mM ammonium acetate and 5 mM 1-MP. A gradient elution with a flow rate of 0.3 mL/min was applied. The initial conditions were 90% of solvent (A) and 10% of solvent (B). The percentage of B was linearly increased to 100% from injection to 5 min and held at 100% B until 7 min. Initial conditions at 90% A were regained at 7.5 min and held until 11 min for column equilibration. The detection system was a Xevo-TQS triple quadrupole mass spectrometer (Waters), operated in negative electrospray ionization (ESI⁻) mode. The following instrumental parameters were used: Capillary voltage 3.0 kV, source temperature 150°C, desolvation temperature 350°C, desolvation gas flow 650 L/h and cone gas flow 150 L/h. The mass spectrometer was operated in multiple reaction monitoring mode (MRM).

		COMPOUND	FORMULA	MASS [DA]	IS
1	C4	PFBA	C4F7O2	212.9786	M4PFBA
2	C5	PFPeA	C5F9O2	262.9754	M2PFDoDA
3	C6	PFHxA	C6F11O2	312.9722	M4PFHpA
4	C7	PFHpA	C7F13O2	362.969	M4PFHpA
5	C8	PFOA	C8F15O2	412.9658	M4PFOA
6			C8F15O2	412.9658	M4PFOA
7	C9	PFNA	C9F17O2	462.9626	M5PFNA
8	C10	PFDA	C10F19O2	512.9594	M2PFDA
9	C11	PFUnDA	C11F21O2	562.9562	M2PFUnDA
10	C12	PFDoDA	C12F23O2	612.953	M2PFDoDA
11	C13	PFTriDA	C13F25O2	662.9498	M2PFDoDA
12	C14	PFTeDA	C14F27O2	712.9466	M2PFDoDA
13			C15F29O2	762.9434	M2PFDoDA
14	C16	PFHxDA	C16F31O2	812.9402	M2PFDoDA
15	C18	PFOcDA	C18F35O2	912.9338	M2PFDoDA
16	C4	PFBS	C4F9O3S	298.9424	18O2-PFHxS
17			C5F11O3S	348.9392	18O2-PFHxS
18	C6	PFHxS	C6F13O3S	398.936	18O2-PFHxS
19			C6F13O3S	398.936	18O2-PFHxS
20			C7F15O3S	448.9328	M4PFOS
21			C7F15O3S	448.9328	M4PFOS
22	C8	PFOS	C8F17O3S	498.9296	M4PFOS
23			C8F17O3S	498.9296	M4PFOS
24			C9F19O3S	548.9264	M4PFOS
25			C9F19O3S	548.9264	M4PFOS
26	C10	PFDS	C10F21O3S	598.9232	M4PFOS
27			C9F19O3S	548.9264	M4PFOS
28			C11F23O3S	648.92	M4PFOS
29		HFPO-DA	C6F11O3	328.9671	M3HFPO-DA
30		NaDONA	C7F12HO4	376.9683	M4PFOA
31		9C1-PF3ONS	C8ClF16O4S	530.895	M2PFDA
32		11Cl-PF3OUdS	C10ClF20O4S	630.8886	M2PFDA
33		3:3 FTA (FPrPA)	C6F7H4O2	241.0099	M2PFHxA
34		5:3 FTA (FPePA)	C8F11H4O2	341.0035	M4PFOA
35		7:3 FTA (FHpPA)	C10F15H4O2	440.9971	M2PFDA
36		4:2 FTS	C6F9H4O3S	326.9737	M2 6:2 FTS
37		6:2 FTS	C8F13H4O3S	426.9673	M2 6:2 FTS
38		8:2 FTS	C10F17H4O3S	526.9609	M2 6:2 FTS
39		FOSA	C8F17HNO2S	497.9456	M8FOSA
40			C8F17HNO2S	497.9456	M8FOSA
41		MeFOSA	C9F17H3NO2S	511.9613	d3-MeFOSA
42		EtFOSA	C10F17H5NO2S	525.9769	d5-EtFOSA
43		FOSAA	C10F17H3NO4S	555.9511	d3-MeFOSAA
44			C10F17H3NO4S	555.9511	d3-MeFOSAA
45		MeFOSAA	C11F17H5NO4S	569.9667	d3-MeFOSAA
46		EtFOSAA	C12F17H7NO4S	583.9824	d5-EtFOSAA
47		MeFOSE	C9F17H5NOS	497.982	d3-MeFOSA
48		EtFOSE	C10F17H7NOS	511.9977	d5-EtFOSA
49		4:2 diPAP	C12F18H8O4P	588.9872	M4 6:2/6:2 diPAP
50		6:2 diPAP	C16F26H8O4P	788.9744	M4 6:2/6:2 diPAP
51		6:2/8:2 diPAP	C18F30H8O4P	888.968	M4 8:2/8:2 diPAP
52			C20F34H8O4P	988.9616	M4 8:2/8:2 diPAP
53		8:2 diPAP	C20F34H8O4P	988.9616	M4 8:2/8:2 diPAP
54			C22F38H8O4P	1088.955	M4 8:2/8:2 diPAP
55			C22F38H8O4P	1088.955	M4 8:2/8:2 diPAP
56		10:2 diPAP	C24F42H8O4P	1188.949	M4 8:2/8:2 diPAP
57			C24F42H8O4P	1188.949	M4 8:2/8:2 diPAP
58			C24F42H8O4P	1188.949	M4 8:2/8:2 diPAP
59		4:2 monoPAP	C6F9H5O4P	342.9782	M2 6:2 mono PAP
60		6:2 monoPAP	C8F13H5O4P	442.9718	M2 6:2 mono PAP
61		8:2 monoPAP	C10F17H5O4P	542.9654	M2 8:2 mono PAP
62		10:2 monoPAP	C12F21H5O4P	642.959	M2 8:2 mono PAP

 Table S1:
 List of target ions with formula and internal standard (IS). Marked in white if authentic standards were available, in blue if otherwise.

SCAN PARAMETERS					
Scan type	Full MS / ddMS2				
Scan range	200 to 1200.0 m/z				
Fragmentation	None or NCE(35) (z=1)				
Resolution	120000 / 15000				
Polarity	Negative				
AGC target	3e6 / 2e5				
Maximum inject time	250 / 30				
HESI SC	DURCE				
Sheath gas flow rate	30				
Aux gas flow rate	10				
Sweep gas flow rate	0				
Spray voltage (kV)	3.70				
Spray current (μA)					
Capillary temp. (°C)	350				
S-lens RF level	55.0				
Aux gas heater temp (°C)	350				

 Table S2:
 Scan parameter, HESI source and acquisition set-up used for the UHRMS Orbitrap Q Exactive HF.

SELECT SPI	ECTRA	PREDICT COMPOSITIONS			
Lower RT Limit	0.5	Prediction Settings			
Uppper RT Limit	15	Mass Tolerance	5 ppm		
Min Precursor Mass	200 Da	Min Element Counts	C		
Max Precursor Mass	1200 Da	Max Element Counts	C90 H190 Br10		
Total Intensity Threshold	6000		Cl10 F30 N10 O15		
Align Retention Times			P2 S5		
Alignment Model	Adaptive Curve	Min RDBE	-1		
Mass Tolerance	5 ppm	Max RDBE	40		
Maximum Shift [min]	0.5	Min H/C	0.1		
DETECT UNKNOWN	COMPOUNDS	Max H/C	3		
General Settings		Max # Candidates	15		
Mass Tolerance	5 ppm	Pattern Matching			
Intensity Tolerance [%]	30	Intensity Tolerance [%]	30		
S/N Tolerance	20	Intensity Threshold [%]	0.1		
Min Peak Intensity	1500000	S/N Threshold	3		
Ions	[M-H]-1	Min Spectral Fit [%]	10		
Min Element Counts	C	Min Pattern Cov. [%]	90		
Max Element Counts	C90 [13]C15 H190	Use Dynamic	True		
	Br10 Cl10 D15 F50	Recalibration			
	K2 N10 Na O15 P	Search Mass Lists			
	S5	Consider Retention Time	False		
Peak Detection		Mass Tolerance	5 ppm		
Filter Peaks	True	mzCloud search			
Max Peak Width [min]	1	Compound Classes	All		
Remove Singlets	False	Match Ion Activation	False		
Min # Scans per Peak	5	Туре			
Min # Isotopes	1	Match Iona Activation	Match with		
GROUP UNKNOWN	COMPOUNDS	Energy	Tolerance		
Compound Consolidation		Ion Activation Energy	40		
Mass Tolerance	5 ppm	Tolerance			
RT Tolerance [min]	0.2	Apply Intensity Threshold	True		
Fragment Data Selection		Precursor Mass Tolerance	5 ppm		
Preferred Ion	[M-H]-1	FT Fragment Mass	10 ppm		
Fill Gaps		Tolerance			
Mass Tolerance	5 ppm	Identity Search	HighChem		
S/N Threshold	5		HighRes		
Use Real Peak Detection	True	Similarity Search	None		
Mark Background Compou	nds	Match Factor Threshold	50		
Max Sample/Blank	5				

 Table S3:
 Compound Discoverer settings for suspect screening on negative mode

Compound	MEAN ±SD [%]	CV
PFBA	146.5 ± 19.8	13.5
PFPEA	68.5 ± 7.9	11.5
PFHXA	94.4 ± 3.5	3.7
РҒНРА	91.8 ± 3	3.3
PFOA	91.5 ± 3.2	3.5
PFNA	92.9 <u>+</u> 3	3.3
PFDA	103.6 ± 2.5	2.4
PFUNDA	104.6 ± 1.7	1.6
PFDoDA	110 ± 2.6	2.3
PFTRIDA	154.4 ± 14.8	9.6
PFTEDA	147.6 ± 6.2	4.2
PFHxDA	132.8 ± 16	12
PFOcDA	117.1 ± 9.5	8.1
PFBS	76.8 ± 1.4	1.8
PFHxS	93.5 ± 2.4	2.6
PFOS	85.2 ± 11.3	13.2
PFDS	87.7 ± 5	5.7
HFPO-DA	58.7 ± 117.5	200
NADONA	75.1 ± 1.6	2.1
9CL-PF3ONS	80.4 ± 5.1	6.4
11CL-PF3OUDS	88.3 ± 3	3.4
3:3 FTA (FPRPA)	56.9 ± 3.5	6.2
5:3 FTA (FPEPA)	46.7 ± 2	4.4
7:3 FTA (FHPPA)	50.1 ± 4.3	8.7
4:2 FTS	83.4 ± 4.4	5.2
6:2 FTS	91 ± 3.8	4.1
8:2 FTS	111.4 ± 3.4	3.1
FOSA	94.3 ± 1.6	1.7
MEFOSA	94.8 ± 2.7	2.9
ETFOSA	94.5 ± 2.4	2.5
FOSAA	62.4 ± 15.8	25.4
MEFOSAA	91.5 ± 4	4.4
ETFOSAA	90.9 ± 8.6	9.5
MEFOSE		
ETFOSE	84.8 ± 6.2	7.3
4:2 diPAP		
6:2 DIPAP	94.6 ± 5.2	5.5
8:2 DIPAP	97.5 ± 2.5	2.5
6:2/8:2 DIPAP	55.8 ± 10.5	18.7
10:2 DIPAP	21.5 ± 6.6	30.9
4:2 MONOPAP		
6:2 MONOPAP		
8:2 MONOPAP		
10:2 MONOPAP		

Table S4:	Mean and standard deviation (mean± sd [%]) and coefficient of variation (CV [%]) f	for
	spike/recovery experiments.	

STANDARD

STANDARD	MEAN ±SD [%]	CV
M4PFBA	5.9 ± 1.8	30.3
M3PFPEA	19.4 ± 4.2	21.6
M2PFHxA	34.6 ± 6.8	19.7
M4PFHpA	91.9 ± 16.7	18.2
M4PFOA	67.1 ± 10.6	15.8
M5PFNA	62.5 ± 11	17.7
M2PFDA	76.7 ± 14.7	19.2
M2PFUnDA	62.8 ± 13.6	21.6
M2PFDoDA	58.7 ± 13.1	22.3

18O2-PFHxS	65.2 ± 10	15.3
M4PFOS	83.1 ± 13.4	16.1
M3HFPO-DA	0 ± 0	228.9

COMPOUND	GEBBINK	THIS STUDY	NISTCERT	YEUNG
PFHpA	0.20000	0.22289	0.30500	0.19800
PFOA	3.86000	4.32928	5.00000	4.10000
PFNA	0.72000	0.77379	0.88000	0.76400
PFDA	0.24000	0.23785	0.39000	0.29300
PFUnDA	0.11000	0.11702	0.17400	0.11800
PFDoDA	0.01700	0.00967		
PFTriDA	0.00900	0.00562		
PFHxS	3.25000	3.40422	4.00000	4.14000
PFOS	10.70000	11.25217		
PFOS-br	7.89000	7.30776		
tot-PFOS	18.50000	18.55993	21.10000	19.30000
tot-FOSA	0.02900	0.00325		

 Table S5:
 Comparison of NIST certified reference material 1957.

Table S6:Comparison of percent recoveries (2.5ng of each PFAS) for Methods A, B, and C. NA-
spike/recovery experiment was not carried out either due to an absence of standard or because the
target was not measured as part of the method.

	PERCENT RECOVERIES IN SPIKED SAMPLES						CORRELATION COEFFICIENTS,			
	метн	OD A	METH	OD B	METHO	OD C	UNSPIKE	D SAMPLES (N=20)	
TARGET	QC-1	QC-2	QC-1	QC-2	QC-1	QC-2	A vs B	A vs C	B vs C	
PFBA	102	102	139	137	118	127				
PFPeA	103	106	104	96	115	106				
PFHxA	105	106	109	103	112	97				
РҒНрА	106	103	107	94	108	100				
PFOA	102	106	124	129	126	103	0,93	0,97	0,90	
PFOA-br	NA	NA	NA	NA	NA	NA				
PFNA	109	108	107	104	113	101	0,80	0,95	0,71	
PFDA	106	108	103	126	107	110	0,81	0,97	0,84	
PFUnDA	109	106	118	123	113	103	0,75	0,99	0,58	
PFDoDA	107	104	112	134	109	115				
PFTriDA	114	112	138	150	56	57				
PFTeDA	120	116	130	143	22	25				
PFPeDA	NA	NA	NA	NA	NA	NA				
PFHxDA	132	119	NA	NA	NA	NA				
PFOcDA	96	88	NA	NA	NA	NA				
PFBS	85	84	99	96	96	91	0,92			
PFPeS	NA	NA	NA	NA	NA	NA	0,89			
PFHxS	103	103	141	136	112	109	0,99	1,00	0,98	
PFHxS-br							0,98	0,98	0,91	
PFHpS	NA	NA	NA	NA	NA	NA				
PFOS	95	106	92	100	143	137	0,94	0,99	0,93	
PFOS-br	NA	NA	NA	NA	NA	NA	0,94	0,99	0,91	
PFNS	NA	NA	NA	NA	NA	NA				
PFDS	102	102	125	143	74	76				
PFDS-br	NA	NA	NA	NA	NA	NA				
PFUnDS	NA	NA	NA	NA	NA	NA				
NaDONA	79	86	112	126	NA	NA				
9CI-PF3ONS	90	96	133	138	102	113				
11Cl-PF3OUdS	91	93	139	149	NA	NA				
3:3 FTA (FPrPA)	84	85	59	75	NA	NA				
5:3 FTA (FPePA)	84	86	84	72	NA	NA				
7:3 FTA (FHnPA)	79	75	93	67	NA	NA				
4:2 FTS	68	68	93	109	11	80				
6:2 FTS	117	115	110	112	449	144				
8:2 FTS	132	138	191	157	7	72				
FOSA	113	112	122	139	120	123				
FOSA-br	NA	NA	NA	NA	NA	NA				
MeFOSA	104	107	NA	NA	107	108				
EtFOSA	114	109	NA	NA	114	119				

Continued on next page Table S6 continued									
TARGET	QC-1	QC-2	QC-1	QC-2	QC-1	QC-2	A vs B	A vs C	B vs C
FOSAA	69	33	58	24	126	120			
MeFOSAA	122	114	127	126	118	113			
EtFOSAA			100	122	124	116			
MeFOSE	87	89	NA	NA	NA	NA			
EtFOSE	106	96	NA	NA	NA	NA			
4:2 diPAP	NA	NA	NA	NA	197	196			
6:2 diPAP	116	112	166	147	114	116			
6:2/8:2 diPAP	162	188	143	169	34	36			
8:2 diPAP	113	124	116	104	112	96			
10:2 diPAP	NA	NA	NA	NA	85	191			
4:2 monoPAP	NA	NA	NA	NA	48	56			
6:2 monoPAP	NA	NA	NA	NA	133	137			
8:2 monoPAP	NA	NA	NA	NA	212	184			
10:2 monoPAP	NA	NA	NA	NA	146	126			

	METHOD	METHOD B	METHOD
	A LOQ		C LOQ
	0,008	0,09	1
PFPEA	0,008	0,09	0,3
	0,008	0,09	0,1
ГГПРА ргол	0,008	0,09	0,1
PFOA br	0,1390	0,09	0,1
FFUA-DF DENIA	0,008	0,09	0,1
	0,008	0,09	0,1
	0,008	0,09	0,1
	0,008	0,09	0,1
PFTriDA	0,008	0,09	0,1
ΡΕΤΑΠΔ	0,008	0,09	0,1
PFPeDA	0,008	0,09	0,1
PFHyDA	0,008	0,07	0,1
PFOcDA	0.008		
PFRS	0,000	0.07	0.1
PFPeS	0.008	0.08	0,1
PFHxS	0.008	0.08	0.1
PFHxS-br	0.008	0.08	0,1
PFHnS	0.008	0.08	0,1
PFOS	0.008	0.08	0.1
PFOS-br	0.008	0.08	0,1
PFNS	0,008	0.08	-)
PFDS	0.008	0.08	0.1
PFDS-br	0,008	0,08	0,1
PFUnDS	0,008	0,08	,
9CI-PF3ONS	0,008	0,09	0,1
11Cl-PF3OUdS	0,008	0,3	
HFPO-DA	0,03	13,5	
NaDONA	0,008	0,09	
3:3 FTA	0,008	1,04	
(FPrPA)			
5:3 FTA	0,008	0,3	
(FPePA) 7.2	0.008	0.00	
FTA(FHnPA)	0,008	0,09	
4:2 FTS	0,008	0,3	0,1
6:2 FTS	0,181	0,3	43
8:2 FTS	0,008	0,3	0,1
FOSA	0,008	0,09	0,1
FOSA-br	0,008	0,09	0,1
MeFOSA	0,008		0,1
EtFOSA	0,008		0,1
FOSAA	0,009	0,3	0,1
MeFOSAA	0,009	0,09	0,1
EtFOSAA	0,008	0,3	0,1
MeFOSE	0,008		
EtFOSE	0,008		
4:2 diPAP	Nd		0,4
6:2 diPAP	0,009	0,31	0,1
6:2/8:2 diPAP	0,008	0,3	0,1
8:2 diPAP	0,008	0,3	0,1
10:2 diPAP	0,341		3,5
4:2 monoPAP			1,1
9.2 monoPAP			0,5
10.2 monoDAD			0,5
10:2 monorAp			1

 Table S7:
 Comparison of limits of quantification for each method

	CODE	POOL X-YEAR	PFBA	PFPEA	PFHXA	PFHPA	PFOA	PFOA- BR	PFNA	PFDA	PFUNDA	PFDoDA	PFTRIDA	PFTEDA	PFHxDA	PFOCDA
1	H0900192	Pool 25-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.038</th><th>2.405</th><th>0.054</th><th>0.394</th><th>0.132</th><th>0.188</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.038</th><th>2.405</th><th>0.054</th><th>0.394</th><th>0.132</th><th>0.188</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.038</th><th>2.405</th><th>0.054</th><th>0.394</th><th>0.132</th><th>0.188</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.038	2.405	0.054	0.394	0.132	0.188	<loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.041	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
2	H0900193	Pool 26-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.036</th><th>3.483</th><th>0.091</th><th>0.383</th><th>0.156</th><th>0.178</th><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.036</th><th>3.483</th><th>0.091</th><th>0.383</th><th>0.156</th><th>0.178</th><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.036</th><th>3.483</th><th>0.091</th><th>0.383</th><th>0.156</th><th>0.178</th><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.036	3.483	0.091	0.383	0.156	0.178	<loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.034	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
3	H0900194	Pool 27-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.040</th><th>3.329</th><th>0.071</th><th>0.512</th><th>0.165</th><th>0.171</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.040</th><th>3.329</th><th>0.071</th><th>0.512</th><th>0.165</th><th>0.171</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.040</th><th>3.329</th><th>0.071</th><th>0.512</th><th>0.165</th><th>0.171</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.040	3.329	0.071	0.512	0.165	0.171	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
4	H0900168	Pool 1-1997	<loq< th=""><th><loq< th=""><th>0.016</th><th>0.070</th><th>3.365</th><th>0.139</th><th>0.367</th><th>0.161</th><th>0.178</th><th><loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.016</th><th>0.070</th><th>3.365</th><th>0.139</th><th>0.367</th><th>0.161</th><th>0.178</th><th><loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.070	3.365	0.139	0.367	0.161	0.178	<loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.038	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
5	H0900169	Pool 2-1997	<loq< th=""><th><loq< th=""><th>0.038</th><th>0.060</th><th>2.904</th><th>0.093</th><th>0.304</th><th>0.150</th><th>0.136</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.038</th><th>0.060</th><th>2.904</th><th>0.093</th><th>0.304</th><th>0.150</th><th>0.136</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.038	0.060	2.904	0.093	0.304	0.150	0.136	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
6	H0900170	Pool 3-1997	<loq< th=""><th><loq< th=""><th>0.030</th><th>0.041</th><th>3.216</th><th>0.080</th><th>0.408</th><th>0.163</th><th>0.170</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.030</th><th>0.041</th><th>3.216</th><th>0.080</th><th>0.408</th><th>0.163</th><th>0.170</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.030	0.041	3.216	0.080	0.408	0.163	0.170	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
7	H0900171	Pool 4-1998	0.666	<loq< th=""><th>0.029</th><th>0.058</th><th>3.116</th><th>0.089</th><th>0.403</th><th>0.177</th><th>0.166</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.029	0.058	3.116	0.089	0.403	0.177	0.166	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
8	H0900172	Pool 5-1998	0.085	<loq< th=""><th>0.021</th><th>0.043</th><th>3.210</th><th>0.084</th><th>0.383</th><th>0.172</th><th>0.190</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.021	0.043	3.210	0.084	0.383	0.172	0.190	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
9	H0900173	Pool 6-1998	0.050	<loq< th=""><th><loq< th=""><th>0.044</th><th>3.023</th><th>0.065</th><th>0.350</th><th>0.159</th><th>0.178</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.044</th><th>3.023</th><th>0.065</th><th>0.350</th><th>0.159</th><th>0.178</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.044	3.023	0.065	0.350	0.159	0.178	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
10	H0900195	Pool 28-1999	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.032</th><th>2.787</th><th>0.062</th><th>0.280</th><th>0.111</th><th>0.131</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.032</th><th>2.787</th><th>0.062</th><th>0.280</th><th>0.111</th><th>0.131</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.032</th><th>2.787</th><th>0.062</th><th>0.280</th><th>0.111</th><th>0.131</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.032	2.787	0.062	0.280	0.111	0.131	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
11	H0900196	Pool 29-1999	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>4.263</th><th>0.072</th><th>0.384</th><th>0.151</th><th>0.183</th><th><loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.037</th><th>4.263</th><th>0.072</th><th>0.384</th><th>0.151</th><th>0.183</th><th><loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.037</th><th>4.263</th><th>0.072</th><th>0.384</th><th>0.151</th><th>0.183</th><th><loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.037	4.263	0.072	0.384	0.151	0.183	<loq< th=""><th>0.038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.038	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
12	H0900197	Pool 30-1999	0.012	<loq< th=""><th><loq< th=""><th>0.072</th><th>3.362</th><th>0.068</th><th>0.411</th><th>0.136</th><th>0.209</th><th><loq< th=""><th>0.044</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.072</th><th>3.362</th><th>0.068</th><th>0.411</th><th>0.136</th><th>0.209</th><th><loq< th=""><th>0.044</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.072	3.362	0.068	0.411	0.136	0.209	<loq< th=""><th>0.044</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.044	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
13	H0900174	Pool 7-2000	0.071	<loq< th=""><th>0.016</th><th>0.040</th><th>3.747</th><th>0.076</th><th>0.482</th><th>0.232</th><th>0.267</th><th><loq< th=""><th>0.047</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.040	3.747	0.076	0.482	0.232	0.267	<loq< th=""><th>0.047</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.047	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
14	H0900175	Pool 8-2000	0.040	<loq< th=""><th>0.016</th><th>0.042</th><th>3.280</th><th>0.059</th><th>0.423</th><th>0.172</th><th>0.175</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.042	3.280	0.059	0.423	0.172	0.175	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
15	H0900176	Pool 9-2001	0.038	<loq< th=""><th>0.028</th><th>0.041</th><th>3.065</th><th>0.048</th><th>0.508</th><th>0.280</th><th>0.291</th><th><loq< th=""><th>0.052</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.028	0.041	3.065	0.048	0.508	0.280	0.291	<loq< th=""><th>0.052</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.052	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
16	H0900177	Pool 10-2002	0.046	<loq< th=""><th>0.015</th><th>0.039</th><th>2.806</th><th>0.052</th><th>0.433</th><th>0.231</th><th>0.218</th><th><loq< th=""><th>0.039</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.015	0.039	2.806	0.052	0.433	0.231	0.218	<loq< th=""><th>0.039</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.039	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
17	H0900178	Pool 11-2002	0.036	<loq< th=""><th>0.014</th><th>0.086</th><th>3.564</th><th>0.066</th><th>0.528</th><th>0.273</th><th>0.243</th><th><loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.014	0.086	3.564	0.066	0.528	0.273	0.243	<loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.049	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
18	H0900179	Pool 12-2002	0.046	<loq< th=""><th>0.016</th><th>0.044</th><th>3.769</th><th>0.072</th><th>0.489</th><th>0.236</th><th>0.250</th><th><loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.044	3.769	0.072	0.489	0.236	0.250	<loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.049	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
19	H0900180	Pool 13-2004	0.027	<loq< th=""><th>0.016</th><th>0.061</th><th>2.681</th><th>0.043</th><th>0.632</th><th>0.338</th><th>0.307</th><th><loq< th=""><th>0.052</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.061	2.681	0.043	0.632	0.338	0.307	<loq< th=""><th>0.052</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.052	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
20	H0900181	Pool 14-2004	0.019	<loq< th=""><th>0.016</th><th>0.042</th><th>2.541</th><th>0.042</th><th>0.512</th><th>0.279</th><th>0.272</th><th><loq< th=""><th>0.059</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.042	2.541	0.042	0.512	0.279	0.272	<loq< th=""><th>0.059</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.059	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
21	H0900182	Pool 15 -2004	0.016	<loq< th=""><th><loq< th=""><th>0.064</th><th>2.962</th><th>0.036</th><th>0.536</th><th>0.295</th><th>0.229</th><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.064</th><th>2.962</th><th>0.036</th><th>0.536</th><th>0.295</th><th>0.229</th><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.064	2.962	0.036	0.536	0.295	0.229	<loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.050	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
22	H0900183	Pool 16-2006	0.194	<loq< th=""><th><loq< th=""><th>0.049</th><th>3.027</th><th>0.033</th><th>0.785</th><th>0.402</th><th>0.395</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.049</th><th>3.027</th><th>0.033</th><th>0.785</th><th>0.402</th><th>0.395</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.049	3.027	0.033	0.785	0.402	0.395	<loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.080	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
23	H0900184	Pool 17-2006	0.139	<loq< th=""><th>0.014</th><th>0.060</th><th>2.661</th><th>0.044</th><th>0.531</th><th>0.229</th><th>0.188</th><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.014	0.060	2.661	0.044	0.531	0.229	0.188	<loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.050	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
24	H0900185	Pool 18-2006	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.045</th><th>2.373</th><th>0.038</th><th>0.548</th><th>0.263</th><th>0.250</th><th><loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.045</th><th>2.373</th><th>0.038</th><th>0.548</th><th>0.263</th><th>0.250</th><th><loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.045</th><th>2.373</th><th>0.038</th><th>0.548</th><th>0.263</th><th>0.250</th><th><loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.045	2.373	0.038	0.548	0.263	0.250	<loq< th=""><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.049	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
25	H0900186	Pool 19-2007	0.012	<loq< th=""><th><loq< th=""><th>0.050</th><th>2.653</th><th>0.028</th><th>0.683</th><th>0.319</th><th>0.249</th><th><loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.050</th><th>2.653</th><th>0.028</th><th>0.683</th><th>0.319</th><th>0.249</th><th><loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.050	2.653	0.028	0.683	0.319	0.249	<loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.074	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
26	H0900187	Pool 20-2007	0.090	<loq< th=""><th>0.025</th><th>0.051</th><th>2.921</th><th>0.051</th><th>0.658</th><th>0.318</th><th>0.277</th><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.025	0.051	2.921	0.051	0.658	0.318	0.277	<loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.053	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
27	H0900188	Pool 21-2007	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th>1.895</th><th>0.018</th><th>0.555</th><th>0.305</th><th>0.286</th><th><loq< th=""><th>0.076</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.027</th><th>1.895</th><th>0.018</th><th>0.555</th><th>0.305</th><th>0.286</th><th><loq< th=""><th>0.076</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.027</th><th>1.895</th><th>0.018</th><th>0.555</th><th>0.305</th><th>0.286</th><th><loq< th=""><th>0.076</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.027	1.895	0.018	0.555	0.305	0.286	<loq< th=""><th>0.076</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.076	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
28	H0900189	Pool 22-2008	0.055	<loq< th=""><th>0.039</th><th>0.049</th><th>2.501</th><th>0.034</th><th>0.794</th><th>0.315</th><th>0.338</th><th><loq< th=""><th>0.088</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.039	0.049	2.501	0.034	0.794	0.315	0.338	<loq< th=""><th>0.088</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.088	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Con	inued on next page															

Table S8: Concentration [ng/g] in serum samples and LOQs for PFCAs.

Table S8 continued																
	Code	Pool x-Year	PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFOA-br	PFNA	PFDA	PFUnDA	PFDoDA	PFTriDA	PFTeDA	PFHxDA	PFOcDA
29	H0900190	Pool 23-2008	0.039	<loq< th=""><th><loq< th=""><th>0.038</th><th>2.235</th><th>0.040</th><th>0.612</th><th>0.306</th><th>0.301</th><th><loq< th=""><th>0.065</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.038</th><th>2.235</th><th>0.040</th><th>0.612</th><th>0.306</th><th>0.301</th><th><loq< th=""><th>0.065</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.038	2.235	0.040	0.612	0.306	0.301	<loq< th=""><th>0.065</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.065	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
30	H0900191	Pool 24-2008	0.068	<loq< th=""><th>0.018</th><th>0.059</th><th>3.582</th><th>0.047</th><th>1.144</th><th>0.630</th><th>0.435</th><th><loq< th=""><th>0.110</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.018	0.059	3.582	0.047	1.144	0.630	0.435	<loq< th=""><th>0.110</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.110	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
31	H1000035	Pool 1-2009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.806</th><th>0.020</th><th>0.595</th><th>0.253</th><th>0.277</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.806</th><th>0.020</th><th>0.595</th><th>0.253</th><th>0.277</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.806</th><th>0.020</th><th>0.595</th><th>0.253</th><th>0.277</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.806</th><th>0.020</th><th>0.595</th><th>0.253</th><th>0.277</th><th><loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.806	0.020	0.595	0.253	0.277	<loq< th=""><th>0.080</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.080	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
32	H1000036	Pool 2-2009	0.092	<loq< th=""><th><loq< th=""><th>0.027</th><th>2.189</th><th>0.021</th><th>0.610</th><th>0.278</th><th>0.295</th><th><loq< th=""><th>0.072</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.027</th><th>2.189</th><th>0.021</th><th>0.610</th><th>0.278</th><th>0.295</th><th><loq< th=""><th>0.072</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.027	2.189	0.021	0.610	0.278	0.295	<loq< th=""><th>0.072</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.072	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33	H1000037	Pool 3-2009	0.099	<loq< th=""><th><loq< th=""><th>0.027</th><th>2.272</th><th>0.025</th><th>0.622</th><th>0.273</th><th>0.292</th><th><loq< th=""><th>0.085</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.027</th><th>2.272</th><th>0.025</th><th>0.622</th><th>0.273</th><th>0.292</th><th><loq< th=""><th>0.085</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.027	2.272	0.025	0.622	0.273	0.292	<loq< th=""><th>0.085</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.085	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
34	H1000038	Pool 1-2010	<loq< th=""><th><loq< th=""><th>0.016</th><th>0.048</th><th>2.722</th><th>0.027</th><th>1.004</th><th>0.482</th><th>0.435</th><th><loq< th=""><th>0.120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.016</th><th>0.048</th><th>2.722</th><th>0.027</th><th>1.004</th><th>0.482</th><th>0.435</th><th><loq< th=""><th>0.120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.048	2.722	0.027	1.004	0.482	0.435	<loq< th=""><th>0.120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.120	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
35	H1000039	Pool 2-2010	<loq< th=""><th><loq< th=""><th>0.039</th><th>0.040</th><th>1.523</th><th>0.020</th><th>0.549</th><th>0.242</th><th>0.184</th><th><loq< th=""><th>0.037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.039</th><th>0.040</th><th>1.523</th><th>0.020</th><th>0.549</th><th>0.242</th><th>0.184</th><th><loq< th=""><th>0.037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.039	0.040	1.523	0.020	0.549	0.242	0.184	<loq< th=""><th>0.037</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.037	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
36	H1000040	Pool 3-2010	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.035</th><th>2.138</th><th>0.035</th><th>0.570</th><th>0.272</th><th>0.297</th><th><loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.035</th><th>2.138</th><th>0.035</th><th>0.570</th><th>0.272</th><th>0.297</th><th><loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.035</th><th>2.138</th><th>0.035</th><th>0.570</th><th>0.272</th><th>0.297</th><th><loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.035	2.138	0.035	0.570	0.272	0.297	<loq< th=""><th>0.074</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.074	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37	H1200009	Pool 1 -2011	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th>2.250</th><th>0.023</th><th>0.632</th><th>0.348</th><th>0.296</th><th><loq< th=""><th>0.093</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.031</th><th>2.250</th><th>0.023</th><th>0.632</th><th>0.348</th><th>0.296</th><th><loq< th=""><th>0.093</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.031</th><th>2.250</th><th>0.023</th><th>0.632</th><th>0.348</th><th>0.296</th><th><loq< th=""><th>0.093</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.031	2.250	0.023	0.632	0.348	0.296	<loq< th=""><th>0.093</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.093	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
38	H1200010	Pool 2 -2011	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.504</th><th>0.022</th><th>0.511</th><th>0.242</th><th>0.319</th><th><loq< th=""><th>0.098</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.504</th><th>0.022</th><th>0.511</th><th>0.242</th><th>0.319</th><th><loq< th=""><th>0.098</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.504</th><th>0.022</th><th>0.511</th><th>0.242</th><th>0.319</th><th><loq< th=""><th>0.098</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.504</th><th>0.022</th><th>0.511</th><th>0.242</th><th>0.319</th><th><loq< th=""><th>0.098</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.504	0.022	0.511	0.242	0.319	<loq< th=""><th>0.098</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.098	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
39	H1200011	Pool 3 -2011	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.761</th><th>0.015</th><th>0.563</th><th>0.293</th><th>0.365</th><th><loq< th=""><th>0.097</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.761</th><th>0.015</th><th>0.563</th><th>0.293</th><th>0.365</th><th><loq< th=""><th>0.097</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.761</th><th>0.015</th><th>0.563</th><th>0.293</th><th>0.365</th><th><loq< th=""><th>0.097</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.761</th><th>0.015</th><th>0.563</th><th>0.293</th><th>0.365</th><th><loq< th=""><th>0.097</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.761	0.015	0.563	0.293	0.365	<loq< th=""><th>0.097</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.097	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
40	H1400025	Pool 1-2012	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th>1.854</th><th>0.019</th><th>0.585</th><th>0.277</th><th>0.231</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.031</th><th>1.854</th><th>0.019</th><th>0.585</th><th>0.277</th><th>0.231</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.031</th><th>1.854</th><th>0.019</th><th>0.585</th><th>0.277</th><th>0.231</th><th><loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.031	1.854	0.019	0.585	0.277	0.231	<loq< th=""><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.041	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
41	H1400026	Pool 2-2012	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>2.124</th><th>0.014</th><th>0.757</th><th>0.398</th><th>0.410</th><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>2.124</th><th>0.014</th><th>0.757</th><th>0.398</th><th>0.410</th><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>2.124</th><th>0.014</th><th>0.757</th><th>0.398</th><th>0.410</th><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>2.124</th><th>0.014</th><th>0.757</th><th>0.398</th><th>0.410</th><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	2.124	0.014	0.757	0.398	0.410	<loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.084	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
42	H1400027	Pool 3-2012	0.028	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.327</th><th>0.008</th><th>0.485</th><th>0.232</th><th>0.224</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.327</th><th>0.008</th><th>0.485</th><th>0.232</th><th>0.224</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.327</th><th>0.008</th><th>0.485</th><th>0.232</th><th>0.224</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.327	0.008	0.485	0.232	0.224	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
43	H1400028	Pool 1-2013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.600</th><th>0.007</th><th>0.602</th><th>0.363</th><th>0.378</th><th><loq< th=""><th>0.077</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.600</th><th>0.007</th><th>0.602</th><th>0.363</th><th>0.378</th><th><loq< th=""><th>0.077</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.600</th><th>0.007</th><th>0.602</th><th>0.363</th><th>0.378</th><th><loq< th=""><th>0.077</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.600</th><th>0.007</th><th>0.602</th><th>0.363</th><th>0.378</th><th><loq< th=""><th>0.077</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.600	0.007	0.602	0.363	0.378	<loq< th=""><th>0.077</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.077	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
44	H1400029	Pool 2-2013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.754</th><th>0.014</th><th>0.519</th><th>0.245</th><th>0.218</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.754</th><th>0.014</th><th>0.519</th><th>0.245</th><th>0.218</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.754</th><th>0.014</th><th>0.519</th><th>0.245</th><th>0.218</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.754</th><th>0.014</th><th>0.519</th><th>0.245</th><th>0.218</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.754	0.014	0.519	0.245	0.218	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
45	H1400030	Pool 3-2013	<loq< th=""><th><loq< th=""><th>0.039</th><th>0.025</th><th>1.819</th><th>0.015</th><th>0.676</th><th>0.329</th><th>0.402</th><th><loq< th=""><th>0.054</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.039</th><th>0.025</th><th>1.819</th><th>0.015</th><th>0.676</th><th>0.329</th><th>0.402</th><th><loq< th=""><th>0.054</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.039	0.025	1.819	0.015	0.676	0.329	0.402	<loq< th=""><th>0.054</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.054	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
46	H1400031	Pool 1-2014	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.475</th><th>0.007</th><th>0.582</th><th>0.318</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.475</th><th>0.007</th><th>0.582</th><th>0.318</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.475</th><th>0.007</th><th>0.582</th><th>0.318</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.475</th><th>0.007</th><th>0.582</th><th>0.318</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.475	0.007	0.582	0.318	0.296	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
47	H1400032	Pool 2-2014	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.613</th><th>0.017</th><th>0.455</th><th>0.229</th><th>0.201</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.613</th><th>0.017</th><th>0.455</th><th>0.229</th><th>0.201</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.613</th><th>0.017</th><th>0.455</th><th>0.229</th><th>0.201</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.613</th><th>0.017</th><th>0.455</th><th>0.229</th><th>0.201</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.613	0.017	0.455	0.229	0.201	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
48	H1500001	Pool 3-2014	<loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th>1.337</th><th>0.006</th><th>0.519</th><th>0.307</th><th>0.295</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.014</th><th><loq< th=""><th>1.337</th><th>0.006</th><th>0.519</th><th>0.307</th><th>0.295</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.014	<loq< th=""><th>1.337</th><th>0.006</th><th>0.519</th><th>0.307</th><th>0.295</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.337	0.006	0.519	0.307	0.295	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
49	H1600041	Pool 1-2015	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.349</th><th>0.007</th><th>0.536</th><th>0.302</th><th>0.302</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.349</th><th>0.007</th><th>0.536</th><th>0.302</th><th>0.302</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.349</th><th>0.007</th><th>0.536</th><th>0.302</th><th>0.302</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.349</th><th>0.007</th><th>0.536</th><th>0.302</th><th>0.302</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.349	0.007	0.536	0.302	0.302	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
50	H1600042	Pool 2-2015	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.127</th><th>0.004</th><th>0.490</th><th>0.257</th><th>0.298</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.127</th><th>0.004</th><th>0.490</th><th>0.257</th><th>0.298</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.127</th><th>0.004</th><th>0.490</th><th>0.257</th><th>0.298</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.127</th><th>0.004</th><th>0.490</th><th>0.257</th><th>0.298</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.127	0.004	0.490	0.257	0.298	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
51	H1600043	Pool 3-2015	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.221</th><th><loq< th=""><th>0.515</th><th>0.303</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.221</th><th><loq< th=""><th>0.515</th><th>0.303</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.221</th><th><loq< th=""><th>0.515</th><th>0.303</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.221</th><th><loq< th=""><th>0.515</th><th>0.303</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.221	<loq< th=""><th>0.515</th><th>0.303</th><th>0.296</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.515	0.303	0.296	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
52	H1700015	Pool 1-2016	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.122</th><th>0.006</th><th>0.479</th><th>0.245</th><th>0.269</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.122</th><th>0.006</th><th>0.479</th><th>0.245</th><th>0.269</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.122</th><th>0.006</th><th>0.479</th><th>0.245</th><th>0.269</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.122</th><th>0.006</th><th>0.479</th><th>0.245</th><th>0.269</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.122	0.006	0.479	0.245	0.269	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
53	H1700016	Pool 2-2016	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.258</th><th>0.009</th><th>0.498</th><th>0.283</th><th>0.281</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.258</th><th>0.009</th><th>0.498</th><th>0.283</th><th>0.281</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.258</th><th>0.009</th><th>0.498</th><th>0.283</th><th>0.281</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.258</th><th>0.009</th><th>0.498</th><th>0.283</th><th>0.281</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.258	0.009	0.498	0.283	0.281	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
54	H1700017	Pool 3-2016	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>1.068</th><th>0.005</th><th>0.444</th><th>0.223</th><th>0.265</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.068</th><th>0.005</th><th>0.444</th><th>0.223</th><th>0.265</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.068</th><th>0.005</th><th>0.444</th><th>0.223</th><th>0.265</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.068</th><th>0.005</th><th>0.444</th><th>0.223</th><th>0.265</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.068	0.005	0.444	0.223	0.265	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
55	H1800017	Pool 1-2017	0.103	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.016</th><th>0.007</th><th>0.420</th><th>0.219</th><th>0.197</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.016</th><th>0.007</th><th>0.420</th><th>0.219</th><th>0.197</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.016</th><th>0.007</th><th>0.420</th><th>0.219</th><th>0.197</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.016	0.007	0.420	0.219	0.197	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
56	H1800018	Pool 2-2017	0.217	<loq< th=""><th><loq< th=""><th><loq< th=""><th>1.430</th><th>0.018</th><th>0.452</th><th>0.228</th><th>0.237</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>1.430</th><th>0.018</th><th>0.452</th><th>0.228</th><th>0.237</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>1.430</th><th>0.018</th><th>0.452</th><th>0.228</th><th>0.237</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	1.430	0.018	0.452	0.228	0.237	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
57	H1800019	Pool 3-2017	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th>1.568</th><th>0.011</th><th>0.541</th><th>0.304</th><th>0.242</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.031</th><th>1.568</th><th>0.011</th><th>0.541</th><th>0.304</th><th>0.242</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.031</th><th>1.568</th><th>0.011</th><th>0.541</th><th>0.304</th><th>0.242</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.031	1.568	0.011	0.541	0.304	0.242	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
	LOQ final			0.004	0.014	0.025	0.026	0.004	0.010	0.026	0.004	0.058	0.034	0.117	0.187	0.026

	CODE	POOL X-YEAR	PFBS	PFHxS	PFHxS- br	PFOS	PFOS- br	PFDS	FOSA	MEFOSA	FOSAA	FOSAA- BR	ETFOSA	MEFOSAA	ETFOSAA	ETFOSE
1	H0900192	Pool 25-1996	0.019	1.624	0.076	13.797	5.446	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.204</th><th>0.146</th><th><loq< th=""><th>0.356</th><th>1.115</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.204</th><th>0.146</th><th><loq< th=""><th>0.356</th><th>1.115</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.204</th><th>0.146</th><th><loq< th=""><th>0.356</th><th>1.115</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.204	0.146	<loq< th=""><th>0.356</th><th>1.115</th><th><loq< th=""></loq<></th></loq<>	0.356	1.115	<loq< th=""></loq<>
2	H0900193	Pool 26-1996	0.027	2.322	0.127	16.185	7.010	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.209</th><th>0.144</th><th><loq< th=""><th>0.328</th><th>0.822</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.209</th><th>0.144</th><th><loq< th=""><th>0.328</th><th>0.822</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.209</th><th>0.144</th><th><loq< th=""><th>0.328</th><th>0.822</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.209	0.144	<loq< th=""><th>0.328</th><th>0.822</th><th><loq< th=""></loq<></th></loq<>	0.328	0.822	<loq< th=""></loq<>
3	H0900194	Pool 27-1996	0.037	2.085	0.135	14.471	6.157	0.068	<loq< th=""><th><loq< th=""><th>0.201</th><th>0.129</th><th><loq< th=""><th>0.184</th><th>0.741</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.201</th><th>0.129</th><th><loq< th=""><th>0.184</th><th>0.741</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.201	0.129	<loq< th=""><th>0.184</th><th>0.741</th><th><loq< th=""></loq<></th></loq<>	0.184	0.741	<loq< th=""></loq<>
4	H0900168	Pool 1-1997	0.022	2.406	0.141	14.173	7.258	<loq< th=""><th>0.028</th><th><loq< th=""><th>0.192</th><th>0.153</th><th><loq< th=""><th>0.479</th><th>0.859</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.028	<loq< th=""><th>0.192</th><th>0.153</th><th><loq< th=""><th>0.479</th><th>0.859</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.192	0.153	<loq< th=""><th>0.479</th><th>0.859</th><th><loq< th=""></loq<></th></loq<>	0.479	0.859	<loq< th=""></loq<>
5	H0900169	Pool 2-1997	0.023	1.848	0.107	13.393	6.644	0.041	<loq< th=""><th><loq< th=""><th>0.175</th><th>0.154</th><th><loq< th=""><th>0.240</th><th>1.071</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.175</th><th>0.154</th><th><loq< th=""><th>0.240</th><th>1.071</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.175	0.154	<loq< th=""><th>0.240</th><th>1.071</th><th><loq< th=""></loq<></th></loq<>	0.240	1.071	<loq< th=""></loq<>
6	H0900170	Pool 3-1997	<loq< th=""><th>2.133</th><th>0.113</th><th>14.434</th><th>7.096</th><th>0.044</th><th><loq< th=""><th><loq< th=""><th>0.152</th><th>0.123</th><th><loq< th=""><th>0.254</th><th>0.626</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	2.133	0.113	14.434	7.096	0.044	<loq< th=""><th><loq< th=""><th>0.152</th><th>0.123</th><th><loq< th=""><th>0.254</th><th>0.626</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.152</th><th>0.123</th><th><loq< th=""><th>0.254</th><th>0.626</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.152	0.123	<loq< th=""><th>0.254</th><th>0.626</th><th><loq< th=""></loq<></th></loq<>	0.254	0.626	<loq< th=""></loq<>
7	H0900171	Pool 4-1998	0.024	1.460	0.074	15.115	7.040	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.167</th><th>0.127</th><th><loq< th=""><th>0.299</th><th>0.727</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.167</th><th>0.127</th><th><loq< th=""><th>0.299</th><th>0.727</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.167</th><th>0.127</th><th><loq< th=""><th>0.299</th><th>0.727</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.167	0.127	<loq< th=""><th>0.299</th><th>0.727</th><th><loq< th=""></loq<></th></loq<>	0.299	0.727	<loq< th=""></loq<>
8	H0900172	Pool 5-1998	0.023	2.145	0.116	14.323	6.744	0.046	<loq< th=""><th><loq< th=""><th>0.153</th><th>0.112</th><th><loq< th=""><th>0.235</th><th>0.670</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.153</th><th>0.112</th><th><loq< th=""><th>0.235</th><th>0.670</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.153	0.112	<loq< th=""><th>0.235</th><th>0.670</th><th><loq< th=""></loq<></th></loq<>	0.235	0.670	<loq< th=""></loq<>
9	H0900173	Pool 6-1998	0.034	2.483	0.151	13.963	6.376	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.191</th><th>0.145</th><th><loq< th=""><th>0.388</th><th>0.649</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.191</th><th>0.145</th><th><loq< th=""><th>0.388</th><th>0.649</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.191</th><th>0.145</th><th><loq< th=""><th>0.388</th><th>0.649</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.191	0.145	<loq< th=""><th>0.388</th><th>0.649</th><th><loq< th=""></loq<></th></loq<>	0.388	0.649	<loq< th=""></loq<>
10	H0900195	Pool 28-1999	0.023	2.108	0.124	12.639	5.969	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.150</th><th>0.118</th><th><loq< th=""><th>0.654</th><th>0.634</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.150</th><th>0.118</th><th><loq< th=""><th>0.654</th><th>0.634</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.150</th><th>0.118</th><th><loq< th=""><th>0.654</th><th>0.634</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.150	0.118	<loq< th=""><th>0.654</th><th>0.634</th><th><loq< th=""></loq<></th></loq<>	0.654	0.634	<loq< th=""></loq<>
11	H0900196	Pool 29-1999	0.026	3.661	0.195	14.551	6.648	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.220</th><th>0.137</th><th><loq< th=""><th>0.575</th><th>0.648</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.220</th><th>0.137</th><th><loq< th=""><th>0.575</th><th>0.648</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.220</th><th>0.137</th><th><loq< th=""><th>0.575</th><th>0.648</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.220	0.137	<loq< th=""><th>0.575</th><th>0.648</th><th><loq< th=""></loq<></th></loq<>	0.575	0.648	<loq< th=""></loq<>
12	H0900197	Pool 30-1999	0.022	2.123	0.108	16.588	7.249	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.202</th><th>0.138</th><th><loq< th=""><th>0.477</th><th>0.903</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.202</th><th>0.138</th><th><loq< th=""><th>0.477</th><th>0.903</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.202</th><th>0.138</th><th><loq< th=""><th>0.477</th><th>0.903</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.202	0.138	<loq< th=""><th>0.477</th><th>0.903</th><th><loq< th=""></loq<></th></loq<>	0.477	0.903	<loq< th=""></loq<>
13	H0900174	Pool 7-2000	0.033	3.090	0.211	14.313	6.146	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.089</th><th>0.063</th><th><loq< th=""><th>0.361</th><th>0.294</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.089</th><th>0.063</th><th><loq< th=""><th>0.361</th><th>0.294</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.089</th><th>0.063</th><th><loq< th=""><th>0.361</th><th>0.294</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.089	0.063	<loq< th=""><th>0.361</th><th>0.294</th><th><loq< th=""></loq<></th></loq<>	0.361	0.294	<loq< th=""></loq<>
14	H0900175	Pool 8-2000	0.021	3.743	0.195	14.697	7.632	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.093</th><th>0.118</th><th>0.205</th><th>0.521</th><th>0.423</th><th>0.031</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.093</th><th>0.118</th><th>0.205</th><th>0.521</th><th>0.423</th><th>0.031</th></loq<></th></loq<>	<loq< th=""><th>0.093</th><th>0.118</th><th>0.205</th><th>0.521</th><th>0.423</th><th>0.031</th></loq<>	0.093	0.118	0.205	0.521	0.423	0.031
15	H0900176	Pool 9-2001	0.021	1.857	0.089	15.529	7.052	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.129</th><th>0.115</th><th>0.091</th><th>0.325</th><th>0.490</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.129</th><th>0.115</th><th>0.091</th><th>0.325</th><th>0.490</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.129</th><th>0.115</th><th>0.091</th><th>0.325</th><th>0.490</th><th><loq< th=""></loq<></th></loq<>	0.129	0.115	0.091	0.325	0.490	<loq< th=""></loq<>
16	H0900177	Pool 10-2002	0.020	2.679	0.140	11.185	5.099	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.086</th><th>0.063</th><th><loq< th=""><th>0.349</th><th>0.174</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.086</th><th>0.063</th><th><loq< th=""><th>0.349</th><th>0.174</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.086</th><th>0.063</th><th><loq< th=""><th>0.349</th><th>0.174</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.086	0.063	<loq< th=""><th>0.349</th><th>0.174</th><th><loq< th=""></loq<></th></loq<>	0.349	0.174	<loq< th=""></loq<>
17	H0900178	Pool 11-2002	0.031	3.674	0.224	12.790	6.617	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.088</th><th>0.075</th><th>0.195</th><th>0.498</th><th>0.178</th><th>0.066</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.088</th><th>0.075</th><th>0.195</th><th>0.498</th><th>0.178</th><th>0.066</th></loq<></th></loq<>	<loq< th=""><th>0.088</th><th>0.075</th><th>0.195</th><th>0.498</th><th>0.178</th><th>0.066</th></loq<>	0.088	0.075	0.195	0.498	0.178	0.066
18	H0900179	Pool 12-2002	0.021	3.506	0.172	14.873	7.137	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.145</th><th>0.108</th><th>0.132</th><th>0.312</th><th>0.174</th><th>0.024</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.145</th><th>0.108</th><th>0.132</th><th>0.312</th><th>0.174</th><th>0.024</th></loq<></th></loq<>	<loq< th=""><th>0.145</th><th>0.108</th><th>0.132</th><th>0.312</th><th>0.174</th><th>0.024</th></loq<>	0.145	0.108	0.132	0.312	0.174	0.024
19	H0900180	Pool 13-2004	0.028	2.587	0.150	11.019	4.731	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.182</th><th>0.161</th><th>0.061</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.182</th><th>0.161</th><th>0.061</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.182</th><th>0.161</th><th>0.061</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.182</th><th>0.161</th><th>0.061</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.182</th><th>0.161</th><th>0.061</th><th><loq< th=""></loq<></th></loq<>	0.182	0.161	0.061	<loq< th=""></loq<>
20	H0900181	Pool 14-2004	0.032	4.248	0.259	9.817	4.543	<loq< th=""><th>0.063</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.691</th><th>0.114</th><th>0.103</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.063	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.691</th><th>0.114</th><th>0.103</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.691</th><th>0.114</th><th>0.103</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.691</th><th>0.114</th><th>0.103</th><th><loq< th=""></loq<></th></loq<>	0.691	0.114	0.103	<loq< th=""></loq<>
21	H0900182	Pool 15 -2004	0.022	2.225	0.134	8.839	4.639	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.115</th><th>0.023</th><th><loq< th=""></loq<></th></loq<>	0.115	0.023	<loq< th=""></loq<>
22	H0900183	Pool 16-2006	0.057	4.849	0.329	11.251	5.328	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.081</th><th>0.060</th><th><loq< th=""><th>0.143</th><th>0.029</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.081</th><th>0.060</th><th><loq< th=""><th>0.143</th><th>0.029</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.081</th><th>0.060</th><th><loq< th=""><th>0.143</th><th>0.029</th><th><loq< th=""></loq<></th></loq<></th></loq<>	0.081	0.060	<loq< th=""><th>0.143</th><th>0.029</th><th><loq< th=""></loq<></th></loq<>	0.143	0.029	<loq< th=""></loq<>
23	H0900184	Pool 17-2006	0.047	5.805	0.414	7.495	4.138	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.051</th><th>0.027</th><th><loq< th=""></loq<></th></loq<>	0.051	0.027	<loq< th=""></loq<>
24	H0900185	Pool 18-2006	0.045	3.732	0.277	6.670	3.513	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.061</th><th>0.023</th><th><loq< th=""></loq<></th></loq<>	0.061	0.023	<loq< th=""></loq<>
25	H0900186	Pool 19-2007	0.033	4.503	0.267	8.018	4.034	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.079</th><th>0.024</th><th><loq< th=""></loq<></th></loq<>	0.079	0.024	<loq< th=""></loq<>
26	H0900187	Pool 20-2007	0.035	5.083	0.314	10.330	5.313	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.053</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	0.053	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
27	H0900188	Pool 21-2007	0.035	4.112	0.253	6.356	2.956	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.131</th><th>0.025</th><th><loq< th=""></loq<></th></loq<>	0.131	0.025	<loq< th=""></loq<>
28	H0900189	Pool 22-2008	0.106	5.253	0.324	7.003	3.779	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.068</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	0.068	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Con	tinued on next page															

Table S9: Concentration [ng/g] in serum samples and LOQs for PFCAs and sulfonamides

Table S9 continued																
	CODE	POOL X-YEAR	PFBS	PFHxS	PFHxS-br	PFOS	PFOS-br	PFDS	FOSA	MeFOSA	FOSAA	FOSAA-br	EtFOSA	MeFOSAA	EtFOSAA	EtFOSE
29	H0900190	Pool 23-2008	0.290	4.527	0.354	6.126	2.846	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.076</th><th>0.017</th><th><loq< th=""></loq<></th></loq<>	0.076	0.017	<loq< th=""></loq<>
30	H0900191	Pool 24-2008	0.074	5.654	0.389	7.392	3.849	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.051</th><th>0.009</th><th><loq< th=""></loq<></th></loq<>	0.051	0.009	<loq< th=""></loq<>
31	H1000035	Pool 1-2009	0.033	3.831	0.260	5.318	2.217	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.038</th><th>0.007</th><th><loq< th=""></loq<></th></loq<>	0.038	0.007	<loq< th=""></loq<>
32	H1000036	Pool 2-2009	0.033	7.120	0.394	5.652	2.722	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33	H1000037	Pool 3-2009	0.037	4.376	0.290	5.966	2.951	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.025</th><th><loq< th=""></loq<></th></loq<>	0.025	<loq< th=""></loq<>
34	H1000038	Pool 1-2010	0.042	5.145	0.345	5.656	2.530	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<>	0.011	<loq< th=""></loq<>
35	H1000039	Pool 2-2010	0.038	3.657	0.257	3.237	1.663	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.011</th><th><loq< th=""></loq<></th></loq<>	0.011	<loq< th=""></loq<>
36	H1000040	Pool 3-2010	0.049	10.572	0.533	5.918	2.977	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37	H1200009	Pool 1 -2011	0.027	5.540	0.282	5.164	2.573	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
38	H1200010	Pool 2 -2011	0.044	5.941	0.349	4.482	1.906	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
39	H1200011	Pool 3 -2011	0.032	7.364	0.412	5.194	2.054	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
40	H1400025	Pool 1-2012	0.036	4.024	0.260	4.211	2.145	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
41	H1400026	Pool 2-2012	0.030	4.734	0.286	5.488	2.289	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
42	H1400027	Pool 3-2012	0.019	3.808	0.171	3.368	1.495	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
43	H1400028	Pool 1-2013	<loq< th=""><th>5.327</th><th>0.226</th><th>4.028</th><th>1.573</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	5.327	0.226	4.028	1.573	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.029</th><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	0.029	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
44	H1400029	Pool 2-2013	0.029	5.157	0.255	3.218	1.662	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.008</th><th><loq< th=""></loq<></th></loq<>	0.008	<loq< th=""></loq<>
45	H1400030	Pool 3-2013	0.027	5.610	0.275	4.837	1.798	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
46	H1400031	Pool 1-2014	0.030	3.392	0.161	3.225	1.312	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
47	H1400032	Pool 2-2014	0.027	5.090	0.280	3.899	1.984	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.052</th><th>0.004</th><th><loq< th=""></loq<></th></loq<>	0.052	0.004	<loq< th=""></loq<>
48	H1500001	Pool 3-2014	0.020	3.339	0.140	3.285	1.389	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
49	H1600041	Pool 1-2015	0.019	3.366	0.133	3.273	1.201	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
50	H1600042	Pool 2-2015	<loq< th=""><th>3.907</th><th>0.133</th><th>3.318</th><th>1.217</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	3.907	0.133	3.318	1.217	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
51	H1600043	Pool 3-2015	<loq< th=""><th>3.164</th><th>0.110</th><th>3.027</th><th>1.148</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	3.164	0.110	3.027	1.148	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
52	H1700015	Pool 1-2016	<loq< th=""><th>5.493</th><th>0.189</th><th>3.171</th><th>1.303</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	5.493	0.189	3.171	1.303	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
53	H1700016	Pool 2-2016	0.022	3.412	0.142	3.425	1.294	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
54	H1700017	Pool 3-2016	0.021	4.062	0.138	3.156	1.329	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
55	H1800017	Pool 1-2017	<loq< th=""><th>2.173</th><th>0.064</th><th>2.859</th><th>1.004</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	2.173	0.064	2.859	1.004	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
56	H1800018	Pool 2-2017	0.022	2.695	0.091	2.867	1.018	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
57	H1800019	Pool 3-2017	0.023	4.233	0.136	2.601	1.149	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
			0.010	0.000	0.001	0.0.1	0.001	0.000	0.00-	0.010	0.0	0.000				0.01
		LOQ final	0.018	0.027	0.001	0.044	0.001	0.033	0.027	0.040	0.075	0.001	0.029	0.027	0.004	0.015

	CODE	POOL X-YEAR	9CL- PF3ONS	11CL- PF3OUDS	NADONA	HFPO-DA	3:3 FTA (FPRPA)	5:3 FTA (FPEPA)	7:3 FTA (FHPPA)	4:2 FTS	6:2 FTS	8:2 FTS	6:2 DIPAP	6:2/8:2 DIPAP	8:2 DIPAP	10:2 diPAP
1	H0900192	Pool 25-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.020</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.020	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
2	H0900193	Pool 26-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.031</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.031	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
3	H0900194	Pool 27-1996	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.002</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.002	0.022	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
4	H0900168	Pool 1-1997	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.026</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.026	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
5	H0900169	Pool 2-1997	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.004</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.004	0.022	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
6	H0900170	Pool 3-1997	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.037</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.037	0.022	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
7	H0900171	Pool 4-1998	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.015</th><th>0.035</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.015	0.035	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
8	H0900172	Pool 5-1998	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.006</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.006	0.041	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
9	H0900173	Pool 6-1998	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.034	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
10	H0900195	Pool 28-1999	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.027</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.027	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
	H0900196	Pool 29-1999	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.024</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.024	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
12	H0900197	Pool 30-1999	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.019</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.019	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
13	H0900174	Pool 7-2000	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.022</th><th>0.022</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.022	0.022	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
14	H0900175	Pool 8-2000	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.002</th><th>0.042</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.002	0.042	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
15	H0900176	Pool 9-2001	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.003</th><th>0.082</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.003	0.082	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
10	H0900177	Pool 10-2002	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.002</th><th>0.049</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.002	0.049	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1/	H0900178	Pool 11-2002	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.012</th><th>0.096</th><th>0.100</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.012	0.096	0.100	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
10	H09001/9	Pool 12-2002	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.016</th><th>0.041</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	0.041	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
20	H0900180	Pool 13-2004	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.003</th><th>0.078</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.003	0.078	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
20 21	H0900181	Pool 14-2004	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.004</th><th>0.034</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.004	0.034	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
21	H0000182	Pool 16 2004	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.020</th><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.020	0.084	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
22	H0000184	Pool 17 2006	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.091</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.091	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
20	H0900185	Pool 18-2006	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.050	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
25	H0900186	Pool 19-2007	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th>0.040</th><th><luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<></th></luq<>	0.040	<luq< th=""><th><luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""><th><luq< th=""></luq<></th></luq<></th></luq<>	<luq< th=""><th><luq< th=""></luq<></th></luq<>	<luq< th=""></luq<>
26	H0900187	Pool 20-2007	<luq< th=""><th><loq< th=""><th><luq< th=""><th><luq< th=""><th><loq< th=""><th><luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<></th></loq<></th></luq<></th></luq<></th></loq<></th></luq<>	<loq< th=""><th><luq< th=""><th><luq< th=""><th><loq< th=""><th><luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<></th></loq<></th></luq<></th></luq<></th></loq<>	<luq< th=""><th><luq< th=""><th><loq< th=""><th><luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<></th></loq<></th></luq<></th></luq<>	<luq< th=""><th><loq< th=""><th><luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<></th></loq<></th></luq<>	<loq< th=""><th><luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<></th></loq<>	<luq< th=""><th><luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<></th></luq<>	<luq< th=""><th></th><th>0.002</th><th>0.055</th><th><luq 0.155</luq </th><th><luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<></th></luq<>		0.002	0.055	<luq 0.155</luq 	<luq< th=""><th><luq< th=""><th><loq< th=""></loq<></th></luq<></th></luq<>	<luq< th=""><th><loq< th=""></loq<></th></luq<>	<loq< th=""></loq<>
27_	H0900188	Pool 21-2007			<1.00							0.055	0.155	<100	<1.00	
28	H0900189	Pool 22-2008	<1.00	<1.00	<1.00	<luq< th=""><th></th><th></th><th></th><th></th><th>0.006</th><th>0.042</th><th></th><th><1.00</th><th><1.00</th><th></th></luq<>					0.006	0.042		<1.00	<1.00	
	110700107	1 001 22 2000	~LUQ	~LUQ	~LUQ	~LUQ	~LUQ	LUQ	~LUQ	LUQ	0.000	0.009	~LUQ	~LUQ	~LUQ	~LUQ

Table S10: Concentration [ng/g] in serum samples and LOQs for FTAs, FTSs, F53B, monoPAPs, diPAPs, HFPO-DA and NaDONA.

Table S10 continued																
	CODE	POOL X-YEAR	9Cl- PF3ONS	11Cl- PF3OUdS	NaDONA	HFPO-DA	3:3 FTA (FPrPA)	5:3 FTA (FPePA)	7:3 FTA (FHpPA)	4:2 FTS	6:2 FTS	8:2 FTS	6:2 diPAP	6:2/8:2 diPAP	8:2 diPAP	10:2 diPAP
29	H0900190	Pool 23-2008	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.009</th><th>0.050</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.009	0.050	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
30	H0900191	Pool 24-2008	0.017	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.084</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.084	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
31	H1000035	Pool 1-2009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.018</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.018	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
32	H1000036	Pool 2-2009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.025</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.025	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33	H1000037	Pool 3-2009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.014</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.014	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
34	H1000038	Pool 1-2010	0.017	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.011</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.011	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
35	H1000039	Pool 2-2010	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.017</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.017	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
36	H1000040	Pool 3-2010	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.015</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.015	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37	H1200009	Pool 1 -2011	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
38	H1200010	Pool 2 -2011	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.010</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.010	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
39	H1200011	Pool 3 -2011	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.016</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.016	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
40	H1400025	Pool 1-2012	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
41	H1400026	Pool 2-2012	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
42	H1400027	Pool 3-2012	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
43	H1400028	Pool 1-2013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.009</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
44	H1400029	Pool 2-2013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
45	H1400030	Pool 3-2013	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
46	H1400031	Pool 1-2014	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
47	H1400032	Pool 2-2014	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.013</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0.013	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
48	H1500001	Pool 3-2014	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
49	H1600041	Pool 1-2015	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
50	H1600042	Pool 2-2015	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
51	H1600043	Pool 3-2015	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
52	H1700015	Pool 1-2016	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
53	H1700016	Pool 2-2016	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
54	H1/00017	Pool 3-2016	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
55	H1800017	Pool 1-2017	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
50	H1800018	Pool 2-2017	0.012	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37	H1800019	P001 3-201 /	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
		LOQ final	0.010	0.093	0.004	0.725	0.344	0.446	0.508	0.001	0.001	0.007	0.074	0.074	0.074	4.590